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Complexity of Decoding Positive-Rate Primitive
Reed-Solomon Codes

Qi Cheng and Daqing Wan

Abstract—It has been proved that the maximum likelihood
decoding problem of Reed-Solomon codes is NP-hard. However,
the length of the code in the proof is at most polylogarithmic
in the size of the alphabet. For the complexity of maximum
likelihood decoding of the primitive Reed-Solomon code, whose
length is one less than the size of alphabet, the only known
result states that it is at least as hard as the discrete logarithm
in some cases where the information rate unfortunately goes to
zero. In this paper, it is proved under a well known cryptography
hardness assumption that

1) There does not exist a randomized polynomial time maxi-
mum likelihood decoder for the Reed-Solomon code family
[q, k(q)]q , where k(x) is any function in Z+ → Z+

computable in time xO(1) satisfying
√
x ≤ k(x) ≤ x−

√
x.

2) There does not exist a randomized polynomial time
bounded-distance decoder for primitive Reed-Solomon
codes at distance 2

3
+ ε of the minimum distance for any

constant 0 < ε < 1
3

.
In particular, this rules out the possibility of a polynomial time
algorithm for maximum likelihood decoding problem of primitive
Reed-Solomon codes of any rate under the assumption.

Index Terms—Computational complexity, Maximum likelihood
decoding, Reed-Solomon codes.

I. INTRODUCTION

Let Fq be a finite field of q elements and of characteristic p.
A linear error-correcting [n, k]q code is defined to be a linear
subspace of dimension k in Fnq . Let D = {x1, · · · , xn} ⊆ Fq
be a subset of cardinality |D| = n > 0. For 1 ≤ k ≤ n, let
f run over all polynomials in Fq[x] of degree at most k − 1.
The vectors of the form

(f(x1), · · · , f(xn)) ∈ Fnq

constitute a linear error-correcting [n, k]q code, which is called
a Reed-Solomon code. If D = F∗q , it is famously known as
a primitive Reed-Solomon code. If D = Fq , it is known as
an extended primitive Reed-Solomon code. We denote them
by RSq[q − 1, k] and RSq[q, k] respectively. A generalized
Reed-Solomon code [n, k]q is defined to be

{(y1f(x1), · · · , ynf(xn))|f ∈ Fq[x], deg(f) < k},

where y1, y2, · · · , yn are nonzero elements in Fq .
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The minimal distance of a generalized Reed-Solomon
[n, k]q code is n − k + 1 because a non-zero polynomial of
degree at most k − 1 has at most k − 1 zeroes. The ultimate
decoding problem for an error-correcting [n, k]q code is the
maximum likelihood decoding: given a received word u ∈ Fnq ,
find a codeword v such that the Hamming distance d(u, v) is
minimal. When the number of errors is reasonably small, say,
smaller than n −

√
nk, then the list decoding algorithms of

Guruswami-Sudan [6] gives a polynomial time algorithm to
find all the codewords.

When the number of errors increases beyond n −
√
nk, it

is not known whether there exists a polynomial time decoding
algorithm. The maximum likelihood decoding of a Reed-
Solomon [n, k]q code is known to be NP-complete [4]. The
proof explores the combinatorial complication of the subset
D, thus requires that n is at most polylogarithmic in q. In
fact, there is a straightforward way to reduce the subset sum
problem in D to the deep hole problem of a Reed-Solomon
code, which can then be reduced to the maximum likelihood
decoding problem [2]. Note that the subset sum problem for
D ⊆ Fq is hard only if |D| is much smaller than q. See [8]
for an in-depth discussion of the subset sum problem when
|D| is close to q.

In practical applications, one rarely uses the case of arbitrary
subset D. The most widely used case is when D = F∗q , where
the rich algebraic structure of the field facilitates a concise
representation of alphabet and a fast encoding algorithm.
This case is essentially equivalent to the case D = Fq . For
simplicity, we focus on the extended primitive Reed-Solomon
code RSq[q, k] in this paper, all our results can be applied to
the Reed-Solomon code RSq[q−1, k] with little modification.
The maximum likelihood decoding problem of RSq[q, k] is
considered to be hard, but the attempts to prove its NP-
completeness have failed so far. The methods in [4][2] can not
be specialized to RSq[q, k] because we have lost the freedom
to select D. The only known complexity result [3] in this
direction says

Proposition 1: Let δ > 0 be a constant. Let q be a prime
power. Suppose h and k are positive integers satisfying

h ≤ √q − k, h ≤ q
1

2+δ + 1 and h ≤
k − 4

δ − 2
4
δ + 1

.

The discrete logarithm in F∗qh can be solved in randomized
time qO(1) with oracle access to a maximum likelihood de-
coder of RSq[q, k].
The main weakness of this result is that for the discrete
logarithm over F∗qh to be hard,

√
q has to be greater than k,

which implies that the information rate k/q goes to zero. But



2

in the real world, we tend to use the primitive Reed-Solomon
codes of high rates.

II. OUR RESULTS ON HARDNESS OF DECODING

Our main result of this paper is to remove the restriction on
rate. The starting point of our results is the following lemma
which we proved in [3]. Let h ≥ 2 be a positive integer. Let
h(x) be a monic irreducible polynomial in Fq[x] of degree
h. Let α be a root of h(x) in an extension field of Fq . Then,
Fq[α] = Fqh is a finite field of qh element. We have

Lemma 1: If every element of F∗qh can be written as a
product of exactly g distinct linear factors of the form α + a
with a ∈ Fq , then the discrete logarithm over F∗qh can be
efficiently solved in random time qO(1) with oracle access to
either a bounded distance decoder of RSq[q, g−h] at distance
q − g, or a maximum likelihood decoder of RSq[q, g − h].

Two simple observations are crucial for us to obtain the new
results in this paper.
• If every element of F∗qh can be written as a product of

exactly g distinct elements in α+Fq , then every element
of F∗qh can be written as a product of exactly q−g distinct
elements in α+ Fq .

• Let α be an element in Fqmh such that Fq[α] = Fqmh .
If every element in F∗qmh can be written as a product
of g1 many distinct elements in α + Fq , then for any
nonnegative integer g2 ≤ qm− q, every element in F∗qmh
can be written as a product of g1 + g2 many distinct
elements in α+ Fqm .

Our main theorem states:
Theorem 1: Let δ > 0 be a constant. Let q be a prime

power. Let m > 1 be an integer. Suppose h and k are positive
integers satisfying

h ≤ q
1

2+δ

m
+

1
m
,h ≤

√
q

m( 4
δ + 2)

− 1
m

and
q ≤ k ≤ qm − q.

The discrete logarithm in F∗qmh can be solved in randomized
time (qm)O(1) with oracle access to a maximum likelihood
decoder of RSqm [qm, k].

The discrete logarithm problem over finite fields is well
studied in computational number theory. It is not believed
to have a polynomial time algorithm. Many cryptographic
protocols base their security on this assumption. The fastest
general purpose algorithm [7] solves the discrete logarithm
problem over finite field F∗qh in conjectured time

exp(O((log qh)1/3(log log qh)2/3)).

Thus, in the above theorem, it is best to take h as large as
possible in order for the discrete logarithm to be hard. If
h = qΘ(1), this complexity is superpolynomial on q. The
above theorem rules out a polynomial time algorithm for
the maximum likelihood decoding problem of Reed-Solomon
code of any rate under a cryptographic hardness assumption.
Interestingly our computational lower bound for decoding
Reed-Solomon codes is not sensitive to their dimensions. To

obtain some intuition from the theorem, we set m = 2 and
δ = 0.1 and conclude:

Corollary 1: Assume that there is no randomized algorithm
solving in time qO(1) the discrete logarithm over F∗q2h for all
h ≤ q0.4. Let k(x) be a function in Z+ → Z+ computable in
time polynomial in xO(1) and

√
x ≤ k(x) ≤ x−

√
x.

Then there is no polynomial time maximum likelihood decoder
for the code family RSq[q, k(q)].

In other words, no polynomial algorithm exists to solve
the maximum likelihood decoding of RSq[q, k(q)] if

√
q ≤

k(q) ≤ q−√q, under well-studied cryptographic hardness as-
sumption. In particular, under the assumption, for any constant
0 < c < 1, there is no polynomial time maximum likelihood
decoder for RSq[q, bcqc]. Furthermore, no algorithm is known
which can solve the discrete logarithm over F∗q2h for infinitely
many q and all h ≤ q0.4 in time qO(1). Under the reasonable
assumption that such algorithm does not exist, there does
not exist a polynomial time algorithm to solve the maximum
likelihood decoding of RSq2 [q2, k(q2)] for infinitely many q.

It is well known that Reed-Solomon codes possess a poly-
nomial time unique decoder, which is a bounded-distance
decoder at distance 1

2 of the minimum distance. We prove
however under a cryptographic hardness assumption that there
does not exist an efficient bounded-distance decoder for prim-
itive Reed-Solomon codes at distance 2

3 + ε of the minimum
distance.

Theorem 2: Let ε be a positive constant less than 1/3. There
does not exist a randomized polynomial time bounded-distance
decoder at distance (2/3 + ε)d for the Reed-Solomon code
RSq[q, k], where d = q − k + 1 is the minimum distance,
unless the discrete logarithm problem over Fqh can be solved
in randomized time qO(1) for any h ≤ q0.8ε.

We comment that the above theorem does not contradict to
the efficient list decoding algorithm in [6], since the code in
our proof has rate approaching one.

In [4], the authors asked whether one can establish NP-
hardness of maximum-likelihood decoding for a nontrivial
family of binary codes. Though we do not solve the prob-
lem, we can establish cryptographic hardness of maximum-
likelihood decoding of binary codes, obtained from concate-
nation of Reed-Solomon codes RS2m(2m, k) with (2m,m)-
Hadamard codes, denoted by RSH2(m2m, k).

Corollary 2: Let ε be a positive constant less than 1/3.
There does not exist a randomized polynomial time bounded-
distance decoder at distance (2/3 + ε)d for RSH2[m2m, k],
where d = 2m−1(2m − k + 1) is the minimum distance,
unless that the discrete logarithm in F2mh can be solved in
randomized time (2m)O(1) for any h ≤ 20.8εm.

A. Our results on finding Hamming balls with many code-
words

By a direct counting argument, for any positive integer r <
q − k, there exists a Hamming ball of radius r containing
at least

(
q
r

)
/qq−r−k many codewords in Reed-Solomon code

RSq[q, k]. Thus, if k = bcqc for a constant 0 < c < 1, we
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set r = bq − k − q1/4c and the number of codewords in the
Hamming ball will be exponential in q. However, finding such
a Hamming ball deterministically is an open problem. There is
some progress on the problem [5][1], but all the results are for
codes of diminishing rates. Our contribution to this problem
is to remove the rate restriction.

Theorem 3: Let 0 < c1 < c2 < 1 be two real numbers.
There exists a deterministic algorithm that given a prime power
q and an integer k satisfying c1q

2 ≤ k ≤ c2q
2, runs in time

qO(1), outputs a vector v ∈ Fq
2

q2 such that the Hamming ball
centered at v and of radius q2− k− q0.4 contains exp(Ω(q2))
many codewords in RSq2 [q2, k].

Our construction allows the information rate to be positive.
On the other hand, the ratio between the Hamming ball radius
q2−k−q0.4 and the minimum distance q2−k+1 is approaching
1, as is in [5][1]. The following result shows that we can
decrease the radius of Hamming ball so that it is smaller than
the minimum distance by a constant factor less than 1 if we
work with codes with information rates going to one.

Theorem 4: For any real number ρ ∈ (2/3, 1), there is a
deterministic algorithm that, given a prime power q, outputs
a positive integer k = q − o(√q) and a vector v ∈ Fqq such
that the Hamming ball centered at v and of radius bρ(q −
k+ 1)c contains at least exp(q0.8(ρ−2/3)) many codewords in
RSq[q, k]. The algorithm has time complexity qO(1). Note that
the information rate is 1− o(1).

It would be interesting for future research to extend the
result to all ρ ∈ (1/2, 1) and to prove a similar result with both
positive information rate and the ratio between the Hamming
ball radius and minimum distance less than 1.

III. PROOF OF LEMMA 1

For readers’ convenience, in this section, we sketch the main
ideas in our earlier paper [3]. This will be the starting point
of our new results in the present paper. In [3], the result was
stated only for weaker bounded distance decoding. See that
paper for a full proof.

Proof of Lemma 1. Let h(x) be a monic irreducible
polynomial of degree h > 1 in Fq[x]. We shall identify the
extension field Fqh with the residue field Fq[x]/(h(x)). Let α
be the class of x in Fq[x]/(h(x)). Then, Fq[α] = Fqh . Con-
sider the Reed-Solomon code RSq[q, g−h]. For a polynomial
f(x) ∈ Fq[x] of degree at most h− 1, let uf be the received
word

uf = (
f(a)
h(a)

+ ag−h)a∈Fq .

By assumption, we can write

f(α) =
g∏
i=1

(α+ ai),

where ai ∈ Fq are distinct. It follows that as polynomials, we
have the identity

g∏
i=1

(x+ ai) = f(x) + t(x)h(x),

where t(x) ∈ Fq[x] is some monic polynomial of degree g−h.
Thus,

f(x)
h(x)

+ xg−h + (t(x)− xg−h) =
∏g
i=1(x+ ai)

h(x)
,

where t(x)−xg−h ∈ Fq[x] is a polynomial of degree at most
g − h− 1 and thus corresponds to a codeword. This equation
implies that the distance of the received word uf to the code
RSq[q, g − h] is at most q − g. If the distance is smaller than
q−g, then one gets a monic polynomial of degree g with more
than g distinct roots. Thus, the distance of uf to the code is
exactly q − g.

Let Cf be the set of codewords in RSq[q, g − h] that have
distance exactly q−g to the received word uf . The cardinality
of Cf is then equal to 1

g! times the number of ordered ways
that f(α) can be written as a product of exactly g distinct
linear factors of the form α+ a with a ∈ Fq . For error radius
q−g, the maximum likelihood decoding of the received word
uf is the same as finding a solution to the equation

f(α) =
g∏
i=1

(α+ ai),

where ai ∈ Fq being distinct.
To show that the discrete logarithm in F∗qh can be reduced

to the decoding of the words of the type uf , we apply the
index calculus algorithm. Let b(α) be a primitive element of
F∗qh . Taking f(α) = b(α)i for a random 0 ≤ i ≤ qh − 2, the
maximum likelihood decoding of the word uf gives a relation

b(α)i =
g∏
j=1

(α+ aj(i)),

where aj(i) ∈ Fq are distinct for 1 ≤ j ≤ g. This gives the
congruence equation

i ≡
g∑
j=1

logb(α)(α+ aj(i)) (mod qh − 1).

Repeating the decoding and let i vary, this would give enough
linear equations in the q variables logb(α)(α + a) (a ∈ Fq)).
Solving the linear system modulo qh−1, one finds the values
of logb(α)(α + a) for all a ∈ Fq . To compute the discrete
logarithm of an element v(α) ∈ F∗qh with respect to the base
b(α), one applies the decoding to the element v(α) and finds
a relation

v(α) =
g∏
j=1

(α+ bj),

where the bj ∈ Fq are distinct. Then,

logb(α) v(α) ≡
g∑
j=1

logb(α)(α+ bj) (mod qh − 1).

In this way, the discrete logarithm of v(α) is computed. The
detailed analysis can be found in [3]. �

In order to use the above theorem, one needs to get good
information on the integer g satisfying the assumption of the
theorem. This is a difficult theoretical problem in general. It
can be done in some cases, with the help of Weil’s character
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sum estimate together with a simple sieving. In particular, the
following result was proved in [3].

Theorem 5: Let h < g be positive integers. Let

N(g, h) =
1
g!

(
qg −

(
g
2

)
qg−1

qh − 1
− (1 +

(
g

2

)
)(h− 1)gqg/2

)
.

Then every element in F∗qh can be written in at least N(g, h)
ways as a product of exactly g distinct linear factors of the
form α+ a with a ∈ Fq .

If for some constant δ > 0, we have

q ≥ max(g2, (h− 1)2+δ), g ≥ (
4
δ

+ 2)(h+ 1),

then
N(g, h) ≥ qg/2/g! > 0.

The main draw back of the above theorem is the condition
q ≥ g2, which translates to the condition that the information
rate (g − h)/q goes to zero in applications.

IV. THE PROOF OF THEOREM 2 AND THEOREM 4

To prove Theorem 2, we start with a lemma.
Lemma 2: Let g, h be positive integers such that for some

constant δ > 0, we have

q ≥ max(g2, (h− 1)2+δ), g ≥ (
4
δ

+ 2)(h+ 1).

1) Every element in F∗qh can be written in at least N(g, h)
ways as a product of exactly q−g distinct linear factors
of the form α+ a with a ∈ Fq .

2) Let h(x) be an irreducible polynomial of degree h
over Fq and let f(x) be a nonzero polynomial of
degree less than h over Fq . Then in Reed-Solomon
code RSq[q, q − g − h], the Hamming ball centered at
( f(a)
h(a) + aq−g−h)a∈Fq of radius g contains at least qg/2

g!
many codewords.

To prove this lemma, we observe that the map that sends
β ∈ F∗qh to

∏
a∈Fq (α+a)/β is one-to-one from F∗qh to itself.

Proof: Note that ∏
a∈Fq

(α+ a) 6= 0.

Given an element β ∈ F∗qh , from Theorem 5, we have that∏
a∈Fq (α+a)/β can be written in at least N(g, h) ways as a

product of exactly g distinct linear factors of the form α + a
with a ∈ Fq , hence β can be written in at least N(g, h) ways
as a product of exactly q−g distinct linear factors of the form
α+ a with a ∈ Fq .

To prove the second assertion, we follow an argument simi-
lar to the proof of Lemma 1. Observe that the number of code-
words in the Hamming ball centered at ( f(a)

h(a) + aq−g−h)a∈Fq
of radius g is exactly 1

g! times the number of ordered ways
that f(α) can be written as a product of exactly q− g distinct
linear factors of the form α+a with a ∈ Fq , which is at least
N(g, h) > qg/2/g!. �

Now we are ready to prove Theorem 2:

Proof of Theorem 2: Set δ = 1
2ε and g = 2+3ε

1−3ε (h+1). We
can verify that

q ≥ max(g2, (h− 1)2+δ), g ≥ (
4
δ

+ 2)(h+ 1)

hold for q big enough, since h ≤ q0.8ε. Thus it follows from
Lemma 1 that the bounded distance decoding of RSq[q, q −
g − h] at distance

q − (q − g) = g = (2/3 + ε)(g + h+ 1) = (2/3 + ε)d

is at least as hard as the discrete logarithm over the finite
field F∗qh . Note that the rate (q − g − h)/q approaches 1 as q
increases.

Proof of Theorem 4: We set

ε = ρ− 2/3, h = q0.8ε, δ =
1
2ε
, and g =

2 + 3ε
1− 3ε

(h+ 1).

One can verify that

q ≥ max(g2, (h− 1)2+δ), g ≥ (
4
δ

+ 2)(h+ 1)

hold for q big enough. We find an irreducible polynomial h(x)
of degree h over Fq using the algorithm in [9]. It follows from
the second assertion in the above lemma that the number of
codewords in the Hamming ball centered at

v = (
1

h(a)
+ aq−g−h)a∈Fq

of radius g = (2/3 + ε)d is

qg/2

g!
> (
√
q/g)g > exp(h) = exp(q0.8ε).

�

V. THE PROOF OF THEOREM 1 AND THEOREM 3

We now consider the case where the rate is positive less
than one. The main new idea for this case is to exploit the
role of subfields. For this purpose, we take a positive integer
m ≥ 2. Let α be an element in Fqmh with Fq[α] = Fqmh .
Since

Fq[α] ⊆ Fqm [α] ⊆ Fqmh ,

we also have Fqmh = Fqm [α].
Theorem 6: Let g1 and g2 be non-negative integers with

g2 ≤ qm − q. Let

N ′(g1, g2, h,m) = N(g1,mh)
(
qm − q
g2

)
.

Then, every element in F∗qmh can be written in at least
N ′(g1, g2, h,m) ways as a product of exactly g1 + g2 distinct
linear factors of the form α+ a with a ∈ Fqm .

If for some constant δ > 0, we have

q ≥ max(g2
1 , (mh− 1)2+δ), g1 ≥ (

4
δ

+ 2)(mh+ 1)

then

N ′(g1, g2, h,m) ≥ qg1/2

g1!

(
qm − q
g2

)
> 0.

Proof. Since g2 ≤ qm − q, we can choose g2 distinct
elements b1, · · · , bg2 from the set Fqm−Fq . There are

(
qm−q
g2

)
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many choices. For any element β ∈ F∗qmh , since Fq[α] =
Fqmh , we can apply Theorem 5 to deduce that

β

(α+ b1) · · · (α+ bg2)
= (α+ a1) · · · (α+ ag1),

where the ai ∈ Fq are distinct. The number of such sets
{a1, a2, a3, · · · , ag1} ⊆ Fq is greater than N(g1,mh). Since
Fq and its complement Fqm −Fq are disjoint, it follows that

β = (α+ b1) · · · (α+ bg2)(α+ a1) · · · (α+ ag1)

is a product of exactly g1 + g2 distinct linear factors of the
form α+ a with a ∈ Fqm . �

Theorem 7: Let m ≥ 2 and h ≥ 2 be two positive integers.
Let q be a prime power and k be an integer satisfying

√
qm <

k < qm −
√
qm. Assume that

q ≥ max((mh− 1)2+δ, (
4
δ

+ 2)2(mh+ 1)2)

for some constant δ > 0.
1) Every element in F∗qmh can be written as a product of

exactly k + h distinct linear factors of the form α + a
with a ∈ Fqm .

2) Let h(x) be an irreducible polynomial of degree h over
Fqm whose root α satisfies that Fq[α] = Fqmh . Let f(x)
be a nonzero polynomial over Fqm of degree less than
h. Then in the Reed-Solomon code RSqm [qm, k], the
Hamming ball centered at ( f(a)

h(a) + ak)a∈Fqm of radius
qm − k − h contains at least

qb
√
qc/2

b√qc!

(
qm − q

k + h− b√qc

)
many codewords.

Proof: Take g1 = bq1/2c and we have

g1 ≥ (
4
δ

+ 2)(mh+ 1) and q ≥ g2
1 .

The conditions

q ≥ max(g2
1 , (mh− 1)2+δ), g1 ≥ (

4
δ

+ 2)(mh+ 1)

hold. Furthermore we have

0 ≤ k − g1 + h ≤ qm − q.

Now take g2 = k − g1 + h. According to Theorem 6, every
element in F∗qmh can be written in at least N ′(g1, g2, h,m)
ways as a product of exactly

g1 + g2 = k + h

distinct linear factors of the form α + a with a ∈ Fqm . And
in the Reed-Solomon code RSqm [qm, k], the Hamming ball
centered at ( f(a)

h(a) + ak)a∈Fqm of radius qm − k − h contains
at least N ′(g1, g2, h,m) many codewords. Finally

N ′(g1, g2, h,m) ≥ qb
√
qc/2

b√qc!

(
qm − q

k + h− b√qc

)
> 0

�
Proof of Theorem 1 and Theorem 3. Theorem 1 follows

directly from the above theorem and Lemma 1 by setting m =
2.

Set m = 2, h = q0.4, k = q2/2 and δ = 0.1 in the above
theorem. We can verify that the conditions are satisfied. Hence
the number of codewords in the Hamming ball centered at

v = (
1

h(a)
+ ak)a∈Fq2

of radius q2 − k − h contains at least

qb
√
qc/2

b√qc!

(
q2 − q

k + h− b√qc

)
= exp(Ω(q2))

many codewords in RSq2 [q2, k]. It remains to find an ir-
reducible polynomial of degree h over Fq2 , whose root α
satisfies that Fq[α] = Fq2h . Let p be the characteristic of
Fq . We can use α such that Fp[α] = Fq2h . We need to find
an irreducible polynomial of degree h logp(q2) over Fp. It can
be done in time polynomial in p and the degree [9]. Then
we factor the polynomial over Fq2 , which can be done in
deterministic time qO(1), and take any factor to be h(x). �

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we show that the maximum likelihood de-
coding of the primitive Reed-Solomon code is at least as
hard as the discrete logarithm over finite fields for any given
information rate. We also prove a hardness result for the
bounded-distance decoding of primitive Reed-Solomon codes
at radius 2/3 + ε of the minimum distance. It is a very
interesting problem whether 2/3 + ε can be improved to
1/2 + ε. We feel that substantially new ideas are required.
Some codes in our proof are defined over finite fields of
composite cardinalities. While this is not a problem in practical
applications, e.g. q = 256 is quite popular, it would be
interesting to remove this restriction, that is, allowing prime
finite fields as well.

Many important questions about decoding Reed-Solomon
codes remain open. For example, does there exist a Hamming
ball of radius less than the minimum distance by a constant
factor smaller than one that contains superpolynomially many
codewords in Reed-Solomon codes of rate less than one?
Another interesting problem is whether the primitive Reed-
Solomon maximum likelihood decoding problem is equivalent
to the discrete logarithm problem over finite fields. In other
words, if we have oracle access to a discrete logarithm solver
over finite fields, can we solve the maximum likelihood
decoding problem for primitive Reed-Solomon codes? If so,
this would imply that the problem is unlikely to be NP-hard,
since discrete logarithm over finite fields are not believed to
be NP-hard.
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