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Abstract. There are q3+q right PGL2(Fq)−cosets in the group PGL2(Fq2).
In this paper, we present a method of generating all the coset represen-
tatives, which runs in time Õ(q3), thus achieves the optimal time com-
plexity up to a constant factor. Our algorithm has applications in solving
discrete logarithms and finding primitive elements in finite fields of small
characteristic.
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1 Introduction

The discrete logarithm problem (DLP) over finite fields underpins the security of
many cryptographic systems. Since 2013, dramatic progresses have been made to
solve the DLP when the characteristic is small [18, 15, 5, 16, 6, 17, 7, 19, 10, 9, 8, 3,
4, 20, 11, 21, 12, 13, 1, 2]. Particularly, for a finite field Fqn , Joux [19] proposed the

first algorithm with heuristic running time at most qn
1/4+o(1)

. Subsequently, Bar-
bulescu, Gaudry, Joux and Thomé[3] proposed the first algorithm with heuristic

quasi-polynomial running time q(logn)
O(1)

. In [20], these algorithms are coined
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as Frobenius representation algorithms. One key component of algorithms in
[19] and [3] is the relation generation, which requires enumerating the cosets of
PGL2(Fq) in PGL2(Fqd), where d is a small integer, e.g. d = 2 [19]. Huang and
Narayanan [14] have applied Joux’s relation generation method for finding prim-
itive elements of finite fields of small characteristic. There is another method of
generating relations, see [7].

To illustrate the application of enumerating cosets of PGL2(Fq) in PGL2(Fq2),
we briefly recall Joux’s method [19] of generating relations among linear polyno-
mials of a small characteristic finite field Fq2k = Fq2 [X]/(I(X)), where I(X) ∈
Fq2 [X] is an irreducible factor of h1(X)Xq − h0(X) with the requirement that
the degrees of h0(X), h1(X) are small. Let x be the image of X mod (I(X)).

Such Frobenius representation has the crucial property that xq = h0(x)
h1(x)

. It is

well known that: ∏
α∈Fq

(y − α) = yq − y.

Applying the Mobius transformation

y 7→ ax+ b

cx+ d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2 is nonsingular, we get

∏
α∈Fq

(
ax+ b

cx+ d
− α) = (

ax+ b

cx+ d
)q − ax+ b

cx+ d
.

We deduce [4]:

h1(x)(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (aqh0(x) + bqh1(x))(cx+ d)− (ax+ b)(cqh0(x) + dqh1(x))

(mod xqh1(x)− h0(x)).

If the right-hand side can be factored into a product of linear factors over Fq2 ,
we obtain a relation of the form

λe0
q2∏
i=1

(x+ αi)
ei =

q2∏
i=1

(x+ αi)
e′i (mod xqh1(x)− h0(x)), (1)

where λ is a multiplicative generator of Fq2 , α1 = 0, α2, α3, . . . , αq2 is a natural
ordering of elements in Fq2 , and ei’s and e′i’s are non-negative integers.

Recall that for a given finite field Fq, the projective general linear group
PGL2(Fq) = GL2(Fq)/E, where E is the subgroup of GL2(Fq) consisting of
non-zero scalar matrices. Following the notion in [3], we denote Pq as a set of
the right cosets of PGL2(Fq) in PGL2(Fq2), namely,

Pq = {PGL2(Fq)t|t ∈ PGL2(Fq2)}.
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Note that the cardinality of Pq is q3 + q. It was shown in [19, 3] that the matri-
ces in the same right coset produce the same relation. In [19], Joux suggested
two ways to generate relations: the first is to investigate the structure of cosets
of PGL2(Fq) in PGL2(Fq2), and the second is to use hash values to remove
duplicate relations. The second approach needs to enumerate the elements in
PGL2(Fq2) that has cardinality about q6, hence has time complexity at least
q6. It may not be the most time-consuming part inside a subexponential algo-
rithm. However, if we want a more efficient algorithm to compute the discrete
logarithms of elements, or to construct a primitive element, this complexity can
be a bottleneck. In this paper, we develop the first approach to generate cosets
representatives efficiently.

1.1 Our result

In this work, we give an almost complete characterization of Pq. The case of
determining left cosets is similar. Our main result is the following:

Theorem 1 There exists a deterministic algorithm that runs in time Õ(q3) and
computes a set S ⊆ PGL2(Fq2) such that

1. |S| ≤ q3 + 2q2 − q + 2;
2. Pq = {PGL2(Fq)t|t ∈ S}.

Here we follow the convention that uses the notation Õ(f(q)) to stand for

O(f(q) logO(1) f(q)). Note that the time complexity of our algorithm is optimal
up to a constant factor, since the Pq has size q3 + q.

2 A Preliminary Classification

We deduce our main result by two steps. Firstly, we describe a preliminary
classification. Then, we deal with the dominating case. In this section, the main
technical tool we use is the fact that the following operations on a matrix over
Fq2 will not change the membership in a right coset of PGL2(Fq) in PGL2(Fq2):

– Multiply the matrix by an element in F∗q2 ;
– Multiply a row by an element in F∗q ;
– Add a multiple of one row with an element in Fq into another row;
– Swap two rows.

Proposition 1. Let g be an element in Fq2 \Fq. Each right coset of PGL2(Fq)
in PGL2(Fq2) is equal to PGL2(Fq)t, where t is one of the following four types:

(I)

(
1 b
c 1

)
, where b, c ∈ Fq2 \ Fq, bc 6= 1.

(II)

(
1 b1
g d2g

)
, where b1, d2 ∈ F∗q , b1 6= d2.
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(III)

(
0 1
c d

)
, where c ∈ F∗q2 , d ∈ Fq2 .

(IV)

(
1 0
c d

)
, where c ∈ Fq2 , d ∈ F∗q2 .

Proof. Let

(
a b
c d

)
be a representative of a right coset of PGL2(Fq) in PGL2(Fq2).

If any of a, b, c, d is zero, then we divide them by the other non-zero element in
the same row, and swap rows if necessary, we will find a representative of type
(III) or (IV). So we may assume that none of the entries are zero. Dividing the
whole matrix by a, we can assume a = 1. Consider the nonsingular matrix(

1 b1 + b2g
c1 + c2g d1 + d2g

)
,

where bi, ci, di ∈ Fq for 1 ≤ i ≤ 2. We distinguish the following cases. Note that
we may also assume c1 = 0, since we can add the multiple of the first row with
−c1 into the second. We start with the matrix(

1 b1 + b2g
c2g d1 + d2g

)
where c2 6= 0.
Case 1. b2 6= 0

Subtracting d2
b2

times the first row from the second row, the matrix becomes(
1 b1 + b2g

−d2b2 + c2g d1 − b1d2
b2

)
.

We can assume that d1− b1d2
b2
6= 0. The matrix is in the same coset with a matrix

of type (I) since we can divide the second row by d1 − b1d2
b2

, and b2 and c2 are
not zero.
Case 2. b2 = 0

We will assume b1 6= 0. After subtracting d1
b1

times the first row from the
second row, the matrix becomes(

1 b1
−d1b1 + c2g d2g

)
Assume d2 6= 0.

1. If d1 = 0, then the matrix can be reduced to type (II) by dividing the second
row by c2.

2. If d1 6= 0, adding the product of the second row with b1
d1

into the first row,
we get (

b1c2
d1
g b1 + b1d2

d1
g

−d1b1 + c2g d2g

)
.
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Dividing all the entries in the matrix by g, we get(
b1c2
d1

b1d2
d1

+ b1g
−1

c2 − d1
b1
g−1 d2

)
.

Dividing the first row by b1c2
d1

and the second row by d2, the matrix is reduced

to type (I), since b1d2
d1

+ b1g
−1 and c2 − d1

b1
g−1 are in Fq2 \ Fq. ut

There are only O(q2) many possibilities for Case (II). Next, we simplify cases
(III) and (IV) further. As a conclusion, we can see that there are only O(q2) many
possibilities in Case (III) and (IV) as well.

Proposition 2. Let (
0 1
c d

)
=

(
0 1

c1 + c2g d1 + d2g

)
be one representative of a right coset of PGL2(Fq) in PGL2(Fq2), where c1, c2, d1, d2 ∈
Fq. Then it belongs to PGL2(Fq)t, where t is of the following two types:

(III-a):

(
0 1
g d2g

)
, where d2 ∈ Fq.

(III-b):

(
0 1

1 + c2g d2g

)
, where c2 ∈ Fq, d2 ∈ Fq.

Proof. There are two cases to consider.

1. Assume c1 = 0. Subtracting the second row by the first row times d1 , we
get (

0 1
c2g d2g

)
.

Since c2 6= 0, after dividing the second row by c2, the matrix is reduced to
type (III-a).

2. Assume c1 6= 0. Subtracting the second row by the first row times d1, we get(
0 1

c1 + c2g d2g

)
.

Dividing the second row by c1, we get(
0 1

1 + c2g
d2
c1
g

)
.

Thus the matrix is reduced to type (III-b), which completes the proof. ut

Similarly, we have the following proposition.
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Proposition 3. Let (
1 0
c d

)
=

(
1 0

c1 + c2g d1 + d2g

)
be one representative of a right coset of PGL2(Fq) in PGL2(Fq2). Then it belongs
to PGL2(Fq)t, where t is of the following two types:

(IV-a):

(
1 0
c2g g

)
, where c2 ∈ Fq.

(IV-b):

(
1 0
c2g 1 + d2g

)
, where c2 ∈ Fq, d2 ∈ Fq.

3 The dominating case

In this section, we show how to reduce the cardinality of type (I) in Proposition
1 from O(q4) to O(q3), which is the main case of representative of cosets. The
following proposition shows that if

A1 =

(
1 b
c 1

)
, A2 =

(
1 b′

c′ 1

)
are of type (I) and

bq − b
c− cq

=
b′q − b′

c′ − c′q
,

1− bcq

b− cq
=

1− b′c′q

b′ − c′q
,

then A1 and A2 are in the same coset. Note that the first value is in Fq. Consider-
ing parameters of the above special format is inspired by the equations appeared
in [19].

Proposition 4. Fix v ∈ F∗q and w ∈ Fq2 . Suppose that we solve the equations{
xq−x
y−yq = v,
1−xyq
y−yq = w,

(2)

under conditions x, y ∈ Fq2 \ Fq and xy 6= 1 , and find two pairs of solu-
tions (b, c), (b′, c′), then A1 and A2 are in the same right coset of PGL2(Fq)
in PGL2(Fq2), where

A1 =

(
1 b
c 1

)
, A2 =

(
1 b′

c′ 1

)
.

Proof. The proof consists of two steps. Firstly, we will parametrize the variety
corresponding to solutions of (x, y)′s to equations (2). Then we will deduce the
desired result.

Note that x, y are in Fq2 , we have xq
2

= x and yq
2

= y. From equations (2),
it follows that

wq = (
1− xyq

y − yq
)q =

1− xqy
yq − y

.
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So wq

v = 1−xqy
x−xq and y − wq

v = xy−1
x−xq . Thus

(y − wq

v
)q+1 =

(xy − 1)(xqyq − 1)

(xq − x)(x− xq)
=

(1− xyq)(1− xqy)

(xq − x)(x− xq)
− y − yq

xq − x
,

which equals (w
q

v )q+1 − 1
v . Besides, we have

−vy + w + wq =
y(x− xq)
y − yq

+
1− xyq

y − yq
+
xqy − 1

y − yq
= x.

Hence equations (2) imply the following{
(y − wq

v )q+1 = (w
q

v )q+1 − 1
v ∈ Fq,

x = −vy + w + wq.
(3)

Let γ be one of the (q + 1)-th roots of (w
q

v )q+1 − 1
v . Suppose that

c =
wq

v
+ ζ1γ, c

′ =
wq

v
+ ζ2γ,

where ζ1, ζ2 are two distinct (q + 1)-th roots of unity, and

b = −vc+ w + wq = w − vζ1γ,

b′ = −vc′ + w + wq = w − vζ2γ.

It follows that

A1 =

(
1 w − vζ1γ

wq

v + ζ1γ 1

)
, A2 =

(
1 w − vζ2γ

wq

v + ζ2γ 1

)
.

Since A2 is not singular, we deduce

A−12 =
1

det(A2)

(
1 −w + vζ2γ

−w
q

v − ζ2γ 1

)
.

Thus,

A1A
−1
2 =

1

det(A2)

(
(vζ1γ − w)(w

q

v + ζ2γ) + 1 −v(ζ1γ − ζ2γ)

ζ1γ − ζ2γ (vζ2γ − w)(w
q

v + ζ1γ) + 1

)
=

1

det(A2)

(
m11 m12

m21 m22

)
.

Note that m12 = −vm21,m11 −m22 = (wq +w)m21. They imply that m12

m21
∈ Fq

and m11−m22

m21
∈ Fq. It remains to prove m11

m21
∈ Fq. Let δ = m11

m21
. Note that

δ ∈ Fq ⇐⇒ δ = δq

⇐⇒ m11m
q
21 = mq

11m21

⇐⇒ m11m
q
21 ∈ Fq.
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Since γq+1 = (w
q

v )q+1 − 1
v = wq+1−v

v2 , we have wq+1

v = vγq+1 + 1. Hence

m11 = wqζ1γ + vζ1γζ2γ − wζ2γ − vγq+1.

Thus

m11m
q
21 = γq+1{(wq +w)− (wζq1ζ2 +wqζ1ζ

q
2 ) + v(ζ2γ + ζq2γ

q)− v(ζ1γ + ζq1γ
q)}.

Since
γq+1 ∈ Fq,

wq + w ∈ Fq, wζq1ζ2 + wqζ1ζ
q
2 ∈ Fq,

ζ2γ + ζq2γ
q ∈ Fq, ζ1γ + ζq1γ

q ∈ Fq,

we deduce m11m
q
21 ∈ Fq, which implies m11

m21
∈ Fq and m22

m21
∈ Fq. Thus

A1A
−1
2 =

ζ1γ − ζ2γ
det(A2)

(m11

m21
−v

1 m22

m21

)
∈ PGL2(q),

which implies that A1 and A2 are in the same right coset of PGL2(Fq) in
PGL2(Fq2). This completes the proof. ut

Remark 1. Following a similar approach, it can be shown that A1 and A2 are
also in the same left coset of PGL2(Fq) in PGL2(Fq2).

The map sending x to xq+1 is a group endomorphism from F∗q2 to F∗q . Observe

that (w
q

v )q+1 − 1
v is in Fq. If it is not zero, then

(y − wq

v
)q+1 = (

wq

v
)q+1 − 1

v
(4)

has q + 1 distinct solutions in Fq2 . Out of these solutions, at most two of them
satisfy (−vy + w + wq)y = 1 because the degree on y is two. All the other
solutions satisfy xy 6= 1.

Lemma 2 Of all the solutions of equation (4), at most two of them are in Fq.

Proof. The number of solution in Fq is equal to the degree of gcd(yq − y, (y −
wq

v )q+1 − (w
q

v )q+1 + 1
v ). And

(y − wq

v
)q+1 − (

wq

v
)q+1 +

1

v

=(yq − w

vq
)(y − wq

v
)− (

wq

v
)q+1 +

1

v

≡(y − w

vq
)(y − wq

v
)− (

wq

v
)q+1 +

1

v
(mod yq − y).

The last polynomial has degree 2. ut
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We observe that −vy+w+wq is in Fq if and only if y is in Fq. Thus we have

Corollary 3 Suppose that q ≥ 4, and (w
q

v )q+1 − 1
v 6= 0. There must exist one

solution of equation (3) that satisfy x, y ∈ Fq2 \ Fq and xy 6= 1.

Remark 2. To list all coset representatives of type (I) in Proposition 1, one can
find one pair of (b, c) ∈ (Fq2 \ Fq) × (Fq2 \ Fq) for every (v, w) ∈ F∗q × Fq2 by
solving equations (3). Assume that q ≥ 4. In order to solve equations (3), one
can build a table indexed by elements in F∗q . In the entry of index α ∈ F∗q , we
store 5 distinct (q + 1)-th roots of α in Fq2 . The table will be built in advance,

in time at most Õ(q2). For given v ∈ F∗q and w ∈ Fq2 , one can find y ∈ Fq2
satisfying equation (4) and x as −vy+w+wq in time logO(1) q such that xy 6= 1
and x, y ∈ Fq2 \Fq since there are at most 4 such pairs from the discussion above.

Thus, determining the dominating case can be done in time Õ(q3).

4 Concluding remarks

We summarise our algorithm in Algorithm 1. Based on the discussions above,
the number of representatives of type (I), (II), (III) and (IV) is no more than
q3 − q2, q2 − 3q + 2, q2 + q and q2 + q respectively, thus the total number of
representatives of all four types (counting repetitions) is no more than q3 +
2q2 − q + 2. From Remark 2, we can see that the time complexity is Õ(q3).
Hence Theorem 1 follows.
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6. Faruk Göloglu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete
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Algorithm 1 Algorithm of generating right coset representatives of PGL2(Fq)
in PGL2(Fq2)

Input: A prime power q ≥ 4 and an element g ∈ Fq2 − Fq

Output: A set S including all right coset representatives of PGL2(Fq) in PGL2(Fq2).
1: for α ∈ Fq do
2: R[α]← ∅
3: end for
4: for β ∈ Fq2 do
5: α← βq+1

6: if the cardinality of R[α] is < 5 then
7: R[α]← R[α] ∪ {β}
8: end if
9: end for . Now R[α] is a set consisting of at most 5 (q + 1)-th root of α.

10: S ← ∅ . Initialize S
11: for (v, w) ∈ F∗

q × Fq2 do . Adding elements of type (I) in Proposition 1

12: α← (wq

v
)q+1 − 1

v

13: for r ∈ R[α] do
14: y ← wq

v
+ r

15: x← −vy + w + wq

16: if xy 6= 1 and x 6∈ Fq and y 6∈ Fq then

17: S ← S ∪ {
(

1 x
y 1

)
}

18: break
19: end if
20: end for
21: end for
22: for (b1, d2) ∈ F∗

q × F∗
q do . Adding elements of type (II) in Proposition 1

23: if b1 6= d2 then

24: S ← S ∪ {
(

1 b1
g d2g

)
}

25: end if
26: end for
27: for d2 ∈ Fq do . Adding elements of type (III) in Proposition 1

28: S ← S ∪ {
(

0 1
g d2g

)
}

29: end for
30: for (c2, d2) ∈ Fq × Fq do

31: S ← S ∪ {
(

0 1
1 + c2g d2g

)
}

32: end for
33: for c2 ∈ Fq do . Adding elements of type (IV) in Proposition 1

34: S ← S ∪ {
(

1 0
c2g g

)
}

35: end for
36: for (c2, d2) ∈ Fq × Fq do

37: S ← S ∪ {
(

1 0
c2g 1 + d2g

)
}

38: end for
39: return S;
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