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Abstract

We consider curves defined over small finite fields with points of large prime order
over an extension field. Such curves are often referred to as Koblitz curves and
are of considerable cryptographic interest. An interesting question is whether such
curves are easy to construct as the target point order grows asymptotically. We
show that under certain number theoretic conjecture, if q is a prime power, r is a
prime and

√
q > (r log q)2+ε, then there are at least Ω( q

r1+ε log2 q
) non-isomorphic

elliptic curves E/Fq, such that the quotient group E(Fqr)/E(Fq) has prime order.
We also show that under the same conjecture, if q is a prime power and r is a
prime satisfying q > (r log q)2+ε and

√
q = o( q

r1+ε log q
), then there are at least

Ω( q
r1+ε log q

) curves H/Fq of genus 2, such that the order of the quotient group
Jac(H)(Fqr)/Jac(H)(Fq) is a prime. Based on these results we present simple
and efficient algorithms for generating Ω(log3 n) non-isomorphic elliptic curves in
Ω(log n) isogenous classes, each with a point of prime order Θ(n). The average time
to generate one curve is O(log2 n). We also present an algorithm which generates
Ω(log3 n) curves of genus two with Jacobians whose orders have a prime factor of
order Θ(n), in heuristic expected time O(log4 n) per curve.
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1 Introduction

Elliptic curve and other curve-based cryptosystems require the construction of curves over

finite fields with points of large prime order on the Jacobians of the curves. This problem

can be formulated as follows: Given a natural number n, to construct a curve over some

finite field and a point on the Jacobian of the curve whose order is prime and close to n.

In the case of elliptic curves, the Jacobian of an elliptic curve is the curve itself. A random

elliptic curve will have prime order with roughly the same probability as finding a prime in

the range between p + 1− 2
√
p and p + 1 + 2

√
p if the curve is defined over Fp. Counting

the order of the group of rational points on an elliptic curve has been made easier due

to recent improvements on Schoof’s method [21,17]. Hence a reasonable approach in the

case of elliptic curves, is to find a prime p around n, then randomly choose elliptic curves

E over Fp until #E(Fp) is a prime, and find a nontrivial rational point on the curve.

However, extending the approach to hyperelliptic curves is difficult since no practically

efficient method is known for counting points on hyperelliptic curves and their Jacobians

when p is large (say greater than 1025), despite some recent progress on the problem [9,8].

An alternative approach which avoids point counting, is to apply the heuristic method of

Atkin-Morain [3] and Elkies involving the CM theory of elliptic curves. Generalization of

this method to hyperelliptic curves is possible but not practical [5,23].

Dramatic progress has been made in point counting when the characteristic of the field is

very small. Satoh first proposed a very efficient algorithm based on the canonical p-adic

lift of the elliptic curve when the characteristic of the field, p, is small but greater than

5. His idea was extended to p = 2, 3 subsequently [15]. In [16], experimental results were

reported. It was concluded in that paper that “it is no longer necessary to use precomputed

curves in cryptography since one can easily compute new curves as desired. Finding a curve

with a security level comparable with RSA-1024 takes minutes or less. Curve generation

for short-term security, with a level equivalent to DES, is feasible on a low-power chip.”

Recently Kedlaya [10] gave a O(g5r3) counting algorithm for hyperelliptic curve over field

Fpr with genus g when p is fixed. The time complexity of all these algorithms depends

polynomially on the characteristic of the field.

The approach considered in this paper is to start with a relatively small finite field Fq,

then look for curves defined over Fq which, when considered as curves over an extension

Fqm , has rational points of large prime order on their Jacobians. Such curves are sometimes

called Koblitz curves [22,12,19]. One simple and natural approach is to fix an elliptic curve

over a small field Fq and then consider it over Fqr as r varies [11]. This heuristic method

seems to work well in the practical range of cryptographic interest. However it does not
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work as r grows asymptotically, since the probability that

#E(Fqr)

#E(Fq)

is prime when r varies is conjectured (in analogy to the the classical Mersenne prime

problem) to be about eγ log r
r log q

(where γ is the Euler’s constant), which tends to 0 as r

increases and q is fixed.

In this paper, we explore the possibility of determining a relatively small base field Fq (say

q = (log n)O(1)) and some extension Fqk (say k = O(log n/ log log n)), so that curves with

Fqk-points of prime order Θ(n) can be constructed. The following theorems are proven

based on a weak version of the Bateman-Horn conjecture concerning the density of primes

when evaluating an integral polynomial. These theorems lead to methods which guarantee

to generate curves of genus one and two with above-mentioned properties.

Theorem 1 Assume that the weak Bateman-Horn conjecture is true and a Siegel zero

doesn’t exist. Let q be a prime power and r be a prime. If
√
q > (r log q)2+ε, there are at

least Ω( q
r1+ε log2 q

) non-isomorphic elliptic curves E/Fq in Ω(
√
q

r1+ε log q
) Fqr-isogenous classes,

such that the order of the quotient group E(Fqr)/E(Fq) is prime.

It is known that the Dirichlet L-function L(s, χ) of a Dirichlet character χ mod q is zero

free in σ > 1 − c/ log(q(2 + |t|)), where s = σ + it and c is an absolute constant, with at

most one exception. If the exception exists, then χ must be real and the zero is also real.

Such a zero is called a Siegel zero [6]. Theorem 1 will be proved in Section 3. It leads to

an algorithm which on input n, determines a suitable base field Fq and extension degree

r, where r = Θ( logn
(4+ε) log logn

) and q = Θ(log4+ε n); then generates Ω(log3 n) non-isomorphic

elliptic curves in Ω(log n) isogenous classes, and a point on each curve with prime order

greater than n and less than n(1 + O(
r+
√
q

q
)); in time O(log5+ε n). The average time to

generate one curve is O(log2 n). Consequently this method is particularly efficient if we

want to generate a large collection of good elliptic curves while minimizing the average

construction time per curve. We note that, in contrast, it is hard to overcome log4 n per

curve barrier if we first select a random curve, then do the point-counting and finally test

the order for primality, since after all testing primality of a number around n takes O(log3 n)

time, and such a number is a prime with probability only 1
logn

. Note that we use the fast

arithmetic algorithm in primality testing, but the error probability needs to be kept below

1/n, hence the time complexity per number is O(log3 n). The advantage in looking for

Koblitz curves defined over Fq, with q = O(log4 n), is that there are Θ(
√
q) = Θ(log2 n)

isogenous classes, hence Θ(log2 n) numbers to test for possible orders over the extension field

Fqr . Although O(log3 n) non-isomorphic Koblitz curves are generated, primality testing is
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performed on only O(log2 n) numbers, and this is essentially why the average construction

time per good curve can be as low as O(log2 n). We refer to Section 4 for more detailed

analysis.

We also prove a similar theorem for curves of genus two under the same conjecture.

Theorem 2 Assume that the weak Bateman-Horn conjecture is true, and a Siegel zero

doesn’t exist. Let q be a prime power and r be a prime. If q > (2r log q)2+ε and
√
q =

o( q
r1+ε log q

), then there are at least Ω( q
r1+ε log q

) curves H/Fq of genus 2, such that the order

of the quotient group Jac(H)(Fqr)/Jac(H)(Fq) is prime.

We will prove this theorem in Section 5. It leads to an algorithm which generates Ω(log3 n)

curves of genus two with Jacobians whose orders have a prime factor greater than n and

less than n(1 +O(
r+
√
q

q
)), in heuristic expected time O(log4 n) per curve.

Setting q = 103, r = 19, as many as 400 curves of genus 2 were generated at the average

rate of less than five minutes per curve, as we implement the algorithm on a PII 300Mhz

computer using GP scripting. All of the group orders are about 240 bits long.

The method developed in this paper can be extended in a natural way to hyperelliptic

curves of any fixed genus. However it seems to be difficult to have rigorous analysis of the

method when the genus of interest is greater than two.

2 The weak Bateman-Horn conjecture

Gauss observed that the density of primes around x is 1
log x

. One might predict, as a more

precise estimate, that the asymptotic formula is

π(x+ y)− π(x) = (1 + o(1))
y

log x
, (1)

where π(x) is the number of primes less than x and y ≤ x. The formula is proved for

y > xα, α is any constant greater than 7/12 and is disproved [14] if y is less than any fixed

power of log x in the sense that

lim sup
x→∞

π(x+ (log x)λ)− π(x)

(log x)λ−1
> 1

and

lim inf
x→∞

π(x+ (log x)λ)− π(x)

(log x)λ−1
< 1.

However, if the conjecture is modified to a weaker form which states that there exists an

absolute constant c such that π(x + y) − π(x) > c y
log x

for 10 log2 x < y < x, no counter
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example has been found. Moreover A. Selberg proved that under Riemann Hypothesis, (1)

is true for almost all x if y
log2 x

→∞.

More generally, it has been conjectured [4] that the number of prime values assumed by

any irreducible polynomial F (X) is given by the formula

πF (x) = (CF + o(1))
x

log |F (x)|
,

for x > log2+ε |F (x)|. The constant CF is
∏
p prime (1− ωF (p)

p
)/(1− 1

p
) where wF (p) is num-

ber of distinct roots F (x) = 0 in Fp. We refer to this conjecture as the Bateman-Horn

Conjecture.

There are strong heuristic arguments [4] in support of the conjecture, at least in terms

of the order of estimate implied in the conjecture. However the precise estimate predicted

in the conjecture can be problematic in some cases. It was recently shown in [7] that for

any given degree some polynomials can be constructed to take either significantly more or

significantly less prime values than predicted by the conjecture. Such discrepancy seems to

disappear if one does not insist on the precise estimate in the conjecture. If for example

the conjecture is weakened to the following

πF (x) ≥ CF
2

x

log |F (x)|
,

for x > 10 log2 max1≤y≤x |F (y)| and x > 10 degF , then no counter example has been found.

We refer to this conjecture as the weak Bateman-Horn Conjecture. Note that the constant

CF depends on the polynomial F . Hence the probability that |F (x)| becomes a prime at a

random integer x can be very different from the probability that a random integer of size

around |F (x)| becomes a prime, unless that CF is very close to a constant.

What we will need is a special case of this weaker statement where the polynomial F splits

over a cyclotomic field. In this case, CF will be shown to be bounded from below by a

function on the degree of F . The function grows very slowly with the degree.

Theorem 3 Let r be a prime. Let ξ be r-th primitive root of unity. Let F be a monic

irreducible polynomial with degree d = φ(r) = r− 1 (φ is Euler function) and splitting field

Q(ξ). Let πF (x) be the number of integers n ≤ x for which |F (n)| is prime. Then under the

weak Bateman-Horn Conjecture and the conjecture of non-existence of a Siegel zero, there

is an absolute constant C such that

πF (x) > C
x

log |F (x)|e(log log r)2 ,

whenever x > 10 log2 max1≤y≤x |F (y)| and x > 10d.
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Proof: Denote Disc(F )/Disc(Q(ξ)) by β2. It is known [2] that

∑
p≡i mod r,p≤x

d

p
= log log x+ A(r, i) +O(

1

log x
)

Now we evaluate the constant CF ,

CF =
∏
p

1− ωF (p)
p

1− 1
p

.

Observe that ωF (p) = d if p ≡ 1 mod r, p - β, ωF (p) = 1 if p = r. And ωF (p) = 0 if

p 6≡ 1 mod r and p 6= r. Hence

CF =
(1− 1

r
)
∏
p≡1 mod r,p-β(1− d

p
)
∏
p≡1 mod r,p|β(1− ωF (p)

p
)∏

p(1− 1
p
)

We have

logCF = −
∑

p≡1 mod r,p-β

d

p
−

∑
p≡1 mod r,p|β

ωF (p)

p
+
∑
p

1

p
+ A,

where |A| is bounded from above by an absolute constant. Hence

logCF =−
∑

p≡1 mod r

d

p
+

∑
p≡1 mod r,p|β

d− ωF (p)

p
+
∑
p

1

p
+ A

≥−
∑

p≡1 mod r

d

p
+
∑
p

1

p
+ A

We also have

−A(r, 1) = −
∑

p≡1 mod r

d

p
+
∑
p

1

p
+D,

where D is an absolute constant. Hence logCF ≥ −A(r, 1) +A−D. Applying the method

in [18], if a Siegel zero doesnot exist, one can have

1

(log log r)2
≤ A(r, 1) ≤ (log log r)2.

It implies that CF = Ω( 1

e(log log r)2
).

3 Special bivariate polynomials associated with elliptic curves

Let E be an elliptic curve defined over Fq, where q is prime power pd, with p 6= 2, 3. Then

E has q + 1− a points over Fq where a is the trace of the Frobenius endomorphism of the
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curve over Fq, and −2
√
q ≤ a ≤ 2

√
q. Let α be one root of x2 − ax + q = 0. Let ᾱ denote

the complex conjugate of α. Then the order of abelian group E(Fqr), denoted by #E(Fqr),

is (αr − 1)(ᾱr − 1).

Let Φn denote the n-th cyclotomic polynomial, the minimal polynomial of ξn = e
2πi
n . Then

xr − 1 =
∏
k>0,k|r Φk(x). Therefore

#E(Fqr) = (αr − 1)(ᾱr − 1)

=
∏

k>0,k|r
Φk(α)

∏
k>0,k|r

Φ(ᾱ)

=
∏

k>0,k|r
Φk(α)Φk(ᾱ),

and Φk(α)Φk(ᾱ) =
∏
gcd(i,k)=1,0<i≤k(α− ξik)(ᾱ− ξik) =

∏
gcd(i,k)=1,0<i<k(q − aξik + ξ2i

k ).

Denote ∏
gcd(i,k)=1,0<i<k

(x− yξik + ξ2i
k )

by Ψk(x, y). The first three Ψk’s are: Ψ1(p, a) = p + 1 − a, Ψ2(p, a) = p + 1 + a, and

Ψ3(p, a) = p2 + (a− 1)p+ (a2 + a+ 1).

From the above discussion we see that for an elliptic curve E defined over Fq of trace a,

#E(Fqr) =
∏

k>0,k|r
Ψk(q, a) (2)

The polynomial Ψk(x, y) possesses several nice properties as shown in the following lemma.

Lemma 1 (1) Ψk(x, y) ∈ Z[x, y].

(2) If k > 3 is prime, then for any integer c, F1(x) = Ψk(c, x) and F2(x) = Ψk(x, c) are

irreducible polynomial over Q, and has a cyclotomic field as its splitting field.

(3) Ψk(x, y) is irreducible over Q.

(4) If r is a prime, then for any −2
√
q ≤ a ≤ 2

√
q,

qr − 2qr/2 + 1 ≤ (q + 1− a)Ψr(q, a) ≤ qr + 2qr/2 + 1.

Proof: Part (1) follows directly from the definition. As for part (2), given any integer c,

F1(x) = Ψk(c, x) is an irreducible polynomial if the only Galois element of Q(ξk)/Q that

fixes cξk − ξ2
k is the identity. Similarly, F2(x) = F2(x, c) is irreducible if the only Galois

element of Q(ξk)/Q that fixes cξ−1
k +ξk is the identity. When k > 3 is a prime, the minimum

polynomial of ξk has degree k− 1 and has more than 5 terms. For any Galois element σ of

Q(ξk)/Q, σ(cξk − ξ2
k)− (cξk − ξ2

k) simplifies to a polynomial expression of ξk of degree less
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than k with at most four terms. Hence if k > 3, F1(x) is irreducible and has cyclotomic

fields as its splitting field. By a similar argument one can show that if k > 3, F2(y) is

irreducible, Part (3) follows from Part (2). Part (4) follows from the equation 2.

Proof of Theorem 1: The order of the quotient group E(Fqr)/E(Fq) is F1(x) = Ψr(q, x).

The variable x will take value from −2
√
q to 2

√
q. From Lemma 1 we see that as long as

√
q > (r log q)2+ε, we may apply Theorem 3 to the polynomial F1(x), and it will evaluate to

Ω(
√
q

r1+ε log q
) number of primes. Hence there are Ω(

√
q

r1+ε log q
) Fq-isogenous classes, such that

the order of the quotient group E(Fqr)/E(Fq) is prime. It is proved in [13,20] that there

exist two constants c1, c2 such that if A is a set of integers between q+1−√q and q+1+
√
q,

the number of non-isomorphic classes of elliptic curves defined over Fq whose number of

points over Fq are in A is

c1
√
q(|A| − 2)/log q ≤ N ≤ c2

√
q|A|log q(log log p)2.

Thus there are at least Ω( q
r1+ε log2 q

) non-isomorphic elliptic curves over Fq in these isogenous

classes.

4 Algorithms for the case of elliptic curves

We are ready to describe an algorithm for constructing an elliptic curve whose order has

prime factor bigger than a given number n.

Algorithm 1 Input: n.

Output: Two primes q, r > 3, and a set of elliptic curves defined over Fq. If

E is any of the output curves, then the quotient group E(Fqr)/E(Fq) has a prime

order larger than n;

(1) Let r be the largest prime less than d logn
4 log logn

e;
(2) Let Q = dn

1
r−1 e; Make sure that Qr−2Qr/2+1

Q+2
√
Q+1

≥ n. If not, increase Q to the

least integer satisfying the inequality.

(3) Search a prime q such that Q ≤ q ≤ Q+ 10 log2 Q;

(4) Find a quadratic nonresidue c in Fq;

(5) Compute polynomial f(x) = Ψr(q, x) =
∏
i>0,gcd(i,r)=1(q − xξir + ξ2i

r ) ∈ Z[x];

(6) Search for numbers −2
√
q ≤ a ≤ 2

√
q, such that f(a) is prime; .

(7) For all possible j-invariants j ∈ Fq of curves over Fq, compute the number

of points of its corresponding curves. Namely for j = 1728, check all the

curves y2 = x3 + αx, α 6= 0; for j = 0, check all the curves y2 = x3 + β,
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β 6= 0; in all the remaining cases, let

k =
108j

j − 1728

check the curves y2 = x3 − kx − 4k and y2 = x3 − kc2x − 4kc3. If any of

the curves has q + 1 − a points over Fq for any a chosen in the previous

step, output the curve.

Now we elaborate on the steps of the Algorithm 1.

Step 1 to 3 in Algorithms 1 determine a suitable base field Fq and extension degree r. The

output curves will be defined over Fq. Note that if r = logn
(4+ε) log logn

, then Q = log4+ε n.

In step 4, we search a quadratic residue in field Fq. The naive search method is adequate

as it takes time O(
√
q), which is O(log2+ε n).

Step 5 and 6 search for traces of suitable elliptic curves. Note that if an elliptic curve E/Fq

has trace a, then quotient group E(Fqr)/E(Fq) has order Ψr(q, a), since r is a prime. Thus

we look for those a where Ψr(q, a) is prime as a ranges from −2
√
q to 2

√
q. Theorem 1

implies that in this range Ψr(q, a) will evaluate to Ω(
√
q

(r−1)1+ε log q
) = Ω(log n) primes. We

use Rabin-Miller’s primality testing algorithm to see whether Ψr(q, a) is prime. The pri-

mality testing algorithm takes time O(log3 n) for each number. The total time complexity

is O(log5+ε n) in these two steps.

Notice that the maximum value for Ψr(q, a) will be

qr + 2qr/2

q − 2
√
q

= qr−1 1 + 2/qr/2

1− 2/
√
q

= qr−1(1 +O(1/
√
q))

= (Q+ log2 Q)r−1(1 +O(1/
√
q))

=Qr−1(1 +
log2 Q

Q
)r−1(1 +O(1/

√
q))

=n(1 +O(
r +
√
q

q
))

This illustrates a nice property of the algorithm: it will not find a curve with prime part of

the order too far away from n.

Step 7 construct elliptic curve for all possible j-invariant values and output those whose

traces a are good in the sense that f(a) is prime. The theory of elliptic curves assures that

for every a in the search range, there is at least one elliptic curve over Fq with trace a. We

apply Shanks’s Baby-Step-Giant-Step (BSGS) strategy to count points over Fq for each

curve. This takes time O(q1/4+ε) = O(log1+ε n) for each curve. Hence the total complexity
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for the last step is O(log5+ε n).

A variant of this algorithm is searching for a curve over F2a ( or Fq where q is small prime

power ). The Theorem 3 implies that by brute-force searching through elliptic curves over

F2a of all possible j-invariants, we are guaranteed to find a good curve very efficiently.

Now suppose E is a curve generated by the algorithm, then group E(Fqr)/E(Fq) has prime

order, hence is cyclic. Any point that has coordinates in Fqr−Fq must have order containing

that big prime. It is easy to generate such a point.

5 The genus two curves

Let H be hyperelliptic curve with genus 2 over Fq where q is a power of a prime p. If p > 3,

H may be given as y2 = f(x), where f(x) ∈ Fq[x] is a monic polynomial of degree 5. Let

P (X) = x4 + a1x
3 + a2x

2 + qa1x+ q2 (3)

be the characteristic polynomial of the Frobenius endomorphism on Jac(H). P (X) can be

factored over C as

P (X) = (x− α1)(x− ᾱ1)(x− α2)(x− ᾱ2),

where ᾱi is the conjugate of αi. The order of Jacobian group over Fqr is

(1− αr1)(1− ᾱ1
r)(1− αr2)(1− ᾱr2)

=
∏

k>0,k|r
Φk(α1)

∏
k>0,k|r

Φk(ᾱ1)
∏

k>0,k|r
Φk(α2)

∏
k>0,k|r

Φk(ᾱ2)

=
∏

k>0,k|r
Φk(α1)Φk(ᾱ1)Φk(α2)Φk(ᾱ2)

We factor Φk over Q(ξk).

Φk(α1)Φk(ᾱ1)Φk(α2)Φk(ᾱ2)

=
∏

0<i<k,gcd(i,k)=1

(ξik − α1)(ξik − ᾱ1)(ξik − α2)(ξik − ᾱ2)

=
∏

0<i<k,gcd(i,k)=1

(ξ4i
k + a1ξ

3i
k + a2ξ

2i
k + qa1ξ

i
k + q2)

Definition 1 Define

∆k(x, y, z) =
∏

i>0,gcd(i,k)=1

(ξ4i
k + yξ3i

k + zξ2i
k + xyξik + x2).
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Lemma 2 (1) ∆k(x, y, z) ∈ Z[x, y, z].

(2) If H is a curve defined over Fq with genus 2 and x4 + a1x
3 + a2x

2 + qa1x + q2 is the

minimal polynomial of its Frobenius endomorphism. Then the order of Jacobian of H

over Fqr is #Jac(H)(Fqr) =
∏
k>0,k|r ∆k(q, a1, a2).

(3) If r > 8 is prime, then for any integers c, d, Z(z) = ∆r(c, d, z) is an irreducible

polynomial over Q, and its splitting field is cyclotomic.

(4) ∆k(x, y, z) is irreducible over Q.

Proof: Part (1) and (2) are directly from the definition of ∆k(x, y, z). The proof of Part (3)

is similar to that for Part (2) of Lemma 1, noting that for any integer c, d, Z(z) = ∆k(c, d, z)

is irreducible polynomial if the only Galois action in Q(ξk)/Q that fixes ξ2
k +dξk + cdξk−1

k +

c2ξk−2
k is the identity. Part (4) follows from part (3).

Given a polynomial P , one can ask whether P is the characteristic polynomial of the

Frobenius endomorphism of a genus-2 curve. This question is considerably harder than the

similar question in the elliptic curve case. For simplicity we replace a1, a2 by −a, b + 2q

respectively in (3)

P (X) = (X2 + q)2 − aX(X2 + q) + bX2.

In [1, page 54, 59], a partial answer was obtained.

Proposition 1 If a pair of integers a, b satisfies following conditions:

(1) 0 < b < a2/4 < q,

(2) b is not divisible by p, and

(3) neither of a2 − 4b nor (b+ 4q)2 − 4qa2 is an integer square.

Then there must exist a genus-2 curve, whose Frobenius endomorphism has minimal poly-

nomial (X2 + q)2 − aX(X2 + q) + bX2.

It is easy to show

Lemma 3 If q is a prime, a is the least prime less than 2
√
q. For all 0 < b < a2

4
, there

are only O(
√
q) number of b’s such that one of a2 − 4b and (b + 4q)2 − 4qa2 is an integer

square.

Proof of Theorem 2: If r is a prime, the order of Jac(H)(Fqr)/Jac(H)(Fq) is ∆r(q,−a, b+
2q). Fix a, and let b vary from 0 to a2/4. From Lemma 2 we see that if q > (2r log q)2+ε

then we can apply Theorem 3 to the polynomial ∆r(q,−a, x+ 2q), and there will be

Ω(
a2/4

2(r − 1)1+ε log q
) = Ω(

q

r1+ε log q
)

b’s such that ∆r(q,−a, b + 2q) is prime. Among them, there are only O(
√
q) number

of b’s such that one of a2 − 4b and (b + 4q)2 − 4qa2 is an integer square. Since
√
q =
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o( q
r1+ε log q

), there exist at least Ω( q
r1+ε log q

) curves H/Fq of genus 2 such that the order of

Jac(H)(Fqr)/Jac(H)(Fq) is prime.

If q = log4+ε n, r = logn
(8+ε) log logn

, we will get at least Ω(log3 n) a2’s, such that ∆r(q,−a, a2)

are primes, among them, at most O(
√
q) = O(log2+ε n) a2’s make one of a2 − 4b and

(b+ 4q)2 − 4qa2 an integer square. This suggests the following strategy to set r and q.

(1) Let r be the largest prime less than logn
8 log logn

;

(2) Let Q = dn
1

2(r−1) e; Increase Q if necessary to satisfy (Qr/2−1)4

(Q1/2+1)4 ≥ n;

(3) Search for a prime between Q and Q+ 10 log2 Q, assign it to q;

Once q and r is fixed, the algorithm then randomly selects coefficients for a degree-5 monic

polynomial f(x). It uses the BSGS method to count number of elements in H(Fq) and

H(Fq2), where H is the hyperelliptic curve defined by y2 = f(x). Then we calculate

Jac(H)(Fqr)/Jac(H)(Fq) and test for the primality. It is very hard to estimate the time

complexity rigorously. Heuristically, we get a prime order with probability roughly equal to
1

logn
. The counting algorithm takes time O(q3/4) = O(log3 n). Hence the time complexity

to generate one curve is O(log4 n).

Although our algorithms assume number theoretic conjectures, they work very well in

practice. In fact, let n = 2240, as many as 400 curves of genus 2 were generated at the

average rate of less than five minutes per curve, as we ran a casual implementation of the

algorithm on a PII 300Mhz computer. This algorithm is remarkably faster and generates

much more curves than the other high genus curve generating algorithms.
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