
Finding the smallest gap between sums of square
roots. ?

Qi Cheng1 and Yu-Hsin Li1

School of Computer Science
The University of Oklahoma
Norman, OK 73019, USA.

Email: {qcheng,yli}@cs.ou.edu.

Abstract. Let k and n be positive integers, n > k. Define r(n, k) to be
the minimum positive value of

|
√

a1 + · · ·+
√

ak −
√

b1 − · · · −
p

bk|

where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n.
It is important to find a tight bound for r(n, k), in connection to the
sum-of-square-roots problem, a famous open problem in computational
geometry. The current best lower bound and upper bound are far apart.
In this paper, we present an algorithm to find r(n, k) exactly in nk+o(k)

time and in ndk/2e+o(k) space. As an example, we are able to compute
r(100, 7) exactly in a few hours on one PC. The numerical data indicate
that the known upper bound seems closer to the truth value of r(n, k).

1 Introduction

In computational geometry, one often needs to compare lengths of two polygo-
nal paths, whose nodes are on an integral lattice, and whose edges are measured
according to the Euclidean norm. The geometrical question can be reduced to a
numerical problem of comparing two sums of square roots of integers. In com-
putational geometry one sometimes assumes a model of real-number machines,
where one memory cell can hold one real number. It is then assumed that an alge-
braic operation, taking a square root as well as a comparison between real num-
bers can be done in one operation. There is a straight-forward way to compare
sums of square roots in real-number machines. But this model is not realistic,
as shown in [11, 9].

If we consider the problem in the model of the Turing machine, then we need
to design an algorithm to compare two sums of square roots of integers with
low bit complexity. One approach would be approximating the sums by decimal
numbers up to a certain precision, and then hopefully we can learn which one is
larger. Formally define r(n, k) to be the minimum positive value of

|
√

a1 + · · ·+
√

ak −
√

b1 − · · · −
√

bk|
? This research is partially supported by NSF grant CCF-0830522 and CCF-0830524.

where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. The
time complexity of the approximation approach is polynomial on − log r(n, k),
since an approximation of a sum of square roots of integers can be computed
in time polynomial in the number of precisions. One would like to know if
− log r(n, k) is bounded from above by a polynomial function in k and log n.
If so, the approximation approach to compare two sums of square roots of inte-
gers runs in polynomial time. Note that even if the lower bound of − log r(n, k)
is exponential, it does not necessarily rule out a polynomial time algorithm.

Although this problem was put forward during the 1980s [4], not many results
have been reported. In [3], it is proved that

− log r(n, k) = O(22k log n)

using the root separation method. Qian and Wang [8] presented a constructive
upper bound for r(n, k) at O(n−2k+ 3

2). The constant hidden in the big-O can be
derived from their paper and it depends on k. Taking it into account, one can
show that

− log r(n, k) ≥ 2k log n− 8k2 + O(log n + k log k).

See Section 2 for details. Hence the bound is nontrivial only when n ≥ 24k. There
is another upper bound for r(n, k) using solutions for the Prouhet–Tarry–Escott
problem [8]. However, the Prouhet–Tarry–Escott problem is hard to solve by
itself.

There is a wide gap between the known upper bound and lower bound of
r(n, k). For example by the root separation method, one has

r(100, 7) ≥ (14 ∗
√

100)−213
≈ 10−17581.

One can not derive a nontrivial upper bound for r(100, 7) either from Qian and
Wang’s method, or from the Prouhet–Tarry–Escott method.

1.1 Our contribution

The lack of strong bounds for r(n, k) after many years of study indicates that
finding a tight bound is likely to be very hard. We feel that the situation calls
for an extensive numerical study of r(n, k). So far only a few toy examples have
been reported and they can be found easily using an exhaustive search:

r(20, 2) ≈ .0002 =
√

10 +
√

11−
√

5−
√

18.

r(20, 3) ≈ .000005 =
√

5 +
√

6 +
√

18−
√

4−
√

12−
√

12.

Computing power has gradually increased which makes it feasible for us to go
beyond toy examples. In addition, there are other motivations for a numerical
study of the sum-of-square-roots problem:

1. The numerical data shed light on the type of integers whose square roots
summations are extremely close.

2. In many practical situations, especially in the exact geometric computation,
n and k are small. Explicit bounds like one we produce here help to speed
up the computation, as they are better than the bounds predicted by the
root separation method.

3. Since the upper bound is so far away from the lower bound, the numerical
data may provide us some hints on which bound is closer to the truth and
may inspire us to formulate a reasonable conjecture on a tight bound of
r(n, k).

How can we find the exact value of r(n, k)? The naive exhaustive search
uses little space but requires n2k time. If n = 100 and k = 7, the algorithm
needs about 10014 ≈ 293 operations, which is prohibitive. A better approach
would be first sorting all the summations of

√
a1 + · · · +√ak (1 ≤ ai ≤ n for

all 1 ≤ i ≤ k) and then going through the sorted list to find the smallest gap
between two consecutive elements. It runs in time at least nk and in space at
least nk. If n = 100 and k = 7, then the approach would use at least 1007 =
1014 ≈ 10000 Gbytes of space, under an overly optimistic assumption that we
use only one byte to hold one value of the summation. The space complexity
makes the computation of r(100, 7) very expensive, to say the least.

We present an algorithm to compute r(n, k) exactly based on the idea of enu-
merating summations using heap. Our algorithm uses much less space than the
sorting approach while preserving the time complexity, which makes computing
r(100, 7) feasible. Indeed it has the space complexity at most of ndk/2e+o(k). Our
search reveals that

r(100, 7) = 1.88× 10−19,

which is reached by
√

7 +
√

14 +
√

39 +
√

70 +
√

72 +
√

76 +
√

85 = 47.42163068019049036900034846

and
√

13+
√

16+
√

46+
√

55+
√

67+
√

73+
√

79 = 47.42163068019049036881196876.

We also prove a simple lower bound for − log r(n, k) based on a pigeonhole
argument:

− log r(n, k) ≥ k log n− k log k + O(k + log n).

In comparison to Qian–Wang’s bound, it is weaker when n is very large, but it is
better when n is polynomial on k, hence it has wider applicability. For example,
when n = 100 and r = 7, it can give us a meaningful upper bound:

r(100, 7) ≤ 7.2× 10−8.

1.2 Related work

The use of heaps to enumerate sums in a sorted order appeared quite early
[6, Section 5.2.3]. Let P be a sorted list of p real numbers whose i-th element

is denoted by P [i]. Let Q be another sorted list of q real numbers whose i-th
element is denoted by Q[i]. Consider the following way of enumerating elements
of form P [i] + Q[j] in a sorted order:

Algorithm 1

Build a heap for P [i] + Q[1], 1 ≤ i ≤ p;
while the heap is not empty do

Remove the element P [i] + Q[j] at the root from the heap
if j < q

then put P [i] + Q[j + 1] at the root of the heap
endif
reheapify.

endwhile

Note that for the program to work, one needs to keep track of the indexes
i and j for the summation P [i] + Q[j]. The algorithm uses space to store p + q
elements but produces a stream of pq elements in a sorted order. Schroeppel
and Shamir [10] applied this idea to attack cryptosystems based on knapsack.
Number theorists have been using this idea as a space-saving mechanism to test
difficult conjectures on computers. For example, consider the following Diophan-
tine equation:

a4 + b4 + c4 = d4.

Euler conjectured that the equation had no positive integer solutions. It was
falsified with a explicit counterexample by Elkies [5] using the theory of elliptic
curves with help from a computer search. Bernstein [1] was able to find all the
solutions with d ≤ 2.1×107. His idea was to build two streams of sorted integers,
one for a4 + b4 and another one for d4 − c4, and then look for collisions. To find
solutions with d ≤ H, the algorithm needs only H1+o(1) space and runs in time
H2+o(1). A similar idea can be used to find integers which can be written in many
ways as summations of certain powers. Our approach is inspired by this work.
Essentially we use heap to enumerate all the summations of form

∑k
i=1

√
ai (

1 ≤ ai ≤ n for all 1 ≤ i ≤ k) and try to find the smallest gap between two
consecutive elements. In our case, equality (i.e. gap = 0) is not interesting in the
view of Proposition 1, while in the power summation applications, only equality
(collision) is desired. There are other important differences:

– In the power sum case it will deal with only integers, while in our case, we
have to deal with float-point numbers. The precision of real numbers plays
an important role. Sometimes two equal sums of square roots can result in
different float point numbers. For example, using double double type to
represent real numbers, the evaluation of

(
√

1 +
√

8 +
√

8) + (
√

24 +
√

83 +
√

83 +
√

89)

differs from the evaluation of

(
√

1 +
√

6 +
√

6) + (
√

32 +
√

83 +
√

83 +
√

89)

by about 8× 10−28, even though they are clearly equal to each other.
– In the power sum case, p-adic restriction can often be applied to speed up

the search, while unfortunately we do not have it here.

2 An upper bound from the pigeonhole principle

Qian-Wang’s upper bound was derived from the inequality:

0 <

∣∣∣∣∣
2k−1∑
i=0

(
2k − 1

i

)
(−1)i

√
t + i

∣∣∣∣∣ ≤ 1 ∗ 3 ∗ 5 ∗ · · · ∗ (4k − 5)
22k−1t2k−

3
2

.

Let ai =
(
2k−1
2i−2

)2
(t + 2i − 2) for 1 ≤ i ≤ k and bi =

(
2k−1
2i−1

)2
(t + 2i − 1) for

1 ≤ i ≤ k, we have

0 < |
k∑
i=1

√
ai −

k∑
i=1

√
bi| ≤

1 ∗ 3 ∗ 5 ∗ · · · ∗ (4k − 5)
22k−1t2k−

3
2

.

Note that
(
2k−1
i

)
can be as large as

(
2k−1
k

)
≥ 22k−1/(2k). To get an upper bound

for r(n, k), assign

n =
(

2k − 1
k

)2

(t + k), (1)

thus we have

− log r(n, k) ≥ 2k log n− 8k2 + O(log n + k log k).

Hence Qian and Wang’s result only applies when n is much greater than 24k. In
particular it does not give a meaningful bound for r(100, 7).

Another interesting upper bound depends on the Prouhet–Tarry–Escott prob-
lem, which is to find a solution for a system of equations:

k∑
i=1

ati =
k∑
i=1

bti, 1 ≤ t ≤ k − 1

under the condition that a1 ≤ a2 · · · ≤ ak and b1 ≤ b2 · · · ≤ bk are distinct lists
of integers. However no such solutions have been found for k = 11 and k > 13
[2]. Therefore the approach based on the Prouhet–Tarry–Escott problem is not
scalable.

Here we present an upper bound based on the pigeonhole argument.

Definition 1. We call an integer n square-free if there is no integer a > 1 such
that a2|n. We use s(n) to denote the number of positive square free integers less
than n, e.g. s(100) = 61.

Proposition 1. Suppose that s1, s2, · · · , · · · , and sk are distinct positive square-
free integers. Then

√
s1,
√

s2, · · · , and
√

sk are linear independent over Q.

Theorem 1. We have

r(n, k) ≤ k
√

n− k(
s(n)+k−1

k

)
− 1

.

Proof. Consider the set

{(a1, a2, · · · , ak)|ai is squarefree , 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n.

The set has cardinality
(
s(n)+k−1

k

)
. For each element (a1, a2, · · · , ak) in the set,

the sum
∑k
i=1

√
ai is distinct by Proposition 1. Hence there are

(
s(n)+k−1

k

)
many

distinct sums in the range [k, k
√

n]. There must be two points within the distance
k
√
n−k

(s(n)+k−1
k)−1

from each other. The theorem follows.

Plugging in n = 100 and k = 7, we have

r(100, 7) ≤ (70− 7)(
67
61

)
− 1

= 7.2× 10−8.

It is well known that s(n) = 6n
π2 + O(

√
n) [7]. From this one can derive

Corollary 1.

− log r(n, k) ≥ k log n− k log k + O(log(nk))

Note that when n is much larger than k, then this bound is not as good as
Qian and Wang’s bound.

3 Algorithm for finding r(n, k)

We first sketch the algorithm. It takes two positive integers n and k as input.
Assume that k < n.

Algorithm 2 Input: Two positive integers n, k (n > k).

Store all the lists (a1, a2, . . . , aA), where 1 ≤ a1 ≤ a2 ≤ · · · ≤ aA ≤ n, into
an array P , and then sort the array P according to the sum

∑A
i=1

√
ai.

Assume that there are p elements in the list;
Store all the lists (a1, a2, . . . , ak−A), where 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak−A ≤ n,

into an array Q, and then sort the array Q according to the sum
∑k−A
i=1

√
ai.

Assume that there are q many elements in Q;
current small gap =∞;
previous smallest element = k;
Build a heap for (P [i], Q[1]), 1 ≤ i ≤ p, where two lists are compared according to

the sum of square roots of the integers in the lists;
While the heap is not empty do

Let (P [i], Q[j]) be the element at the root of the heap;
current top element =

∑A
l=1

√
P [i][l] +

∑k−A
l=1

√
Q[j][l]

if 0 < current top element − previous top element < current small gap
then current small gap = current top element− previous top element;

endif
remove (P [i], Q[j]) from the heap;
previous top element = (P [i], Q[j]);
if there exist integers j′ such that j < j′ ≤ q and P [i][A] ≤ Q[j′][1]

let j′ be the smallest one and put (P [i], Q[j′]) at the root
endif
reheapify

endwhile
Ouput r(n, k) = current small gap

Note that in the above algorithm, unlike in Algorithm 1, we replace (P [i], Q[j])
at the root by (P [i], Q[j′]), which is not necessarily (P [i], Q[j+1]). In many cases,
j′ is much bigger than j+1. This greatly improves the efficiency of the algorithm.
Now we prove the correctness of the algorithm.

Theorem 2. When the algorithm halts, it outputs r(n, k);

Proof. For any 1 ≤ a1 ≤ a2 · · · ≤ aA ≤ n, define

Sa1,a2,··· ,aA
= {(a1, a2, · · · , ak)|aA ≤ aA+1 ≤ aA+2 ≤ · · · ≤ ak ≤ n}

Partition the set

S = {(a1, a2, · · · , ak)|1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n}

into subsets according to the first A elements, namely,

S =
⋃

1≤a1≤a2≤···aA≤n

Sa1,a2,··· ,aA
.

As usual, we order two lists of integers by their sums of square roots. Consider
the following procedure: select the smallest element among all the the minimum
elements in all the subsets, and remove it from the subset. If we repeat the
procedure, we generate a stream of elements in S in a sorted order.

It can be verified that in our algorithm, the heap consists of exactly all
the minimum elements from all the subsets. The root of the heap contains the
minimum element of the heap. After we remove the element at the root, we put
the next element from its subset into the heap. Hence the algorithm produces
a stream of elements from S in a sorted order. The minimum gap between two
consecutive elements in the stream is r(n, k) by definition.

Theorem 3. The algorithm runs in time at most nk+o(k) and space at most
nmax(A,k−A)+o(k).

Proof. Using the root separation bound, we need at most O(22k log n) bit to
represent a sum of square roots for comparison purposes. So comparing two
elements takes time (22k log n)O(1). Since every element in S appears at the root
of the heap at most once and |S| ≤ nk, the main loop has at most nk iterations.
For each iteration, the time complexity is

(22k log n)O(1) log(nA).

The complexity of other steps are much smaller comparing to the loop. Hence
the time complexity is nk+o(k). The space complexity is clearly nmax(A,k−A)+o(k).

4 Numerical Data and Observations

To implement our algorithm, the main issue is to decide the precision when
computing the square roots and their summations. We need to pay attention to
two possibilities:

– First, two summations may be different, but if the precision is set too small,
then they appear to be equal numerically. Keep in mind that we have not
ruled out that r(n, k) can be as small as n−2k

.
– Secondly two expressions may represent the same real number, but after

the numerical calculation, they are different. This is the issue of numerical
stability.

In either case, we may get a wrong r(n, k). Our strategy is to set the precision at
about 2k log n decimal digits. For example, to compute r(100, 7), we use the data
type which has precision about 32 decimal digits. Whenever the difference of two
summations is smaller than k2n−2k, we call a procedure based on Proposition 1
to decide whether the two numbers are equal or not.

We produce some statistics data about the sums of square roots and the
gaps between two consecutive sums. The computation takes about 18 hours on
a high-end PC. There are 17940390852 real numbers in [7, 100] which can be
written as summations of 7 square roots of positive integers less than 100. Hence
there are 17940390851 gaps between two consecutive numbers after we sort all
the sums.

In Table 1, we list an integer 7 ≤ a ≤ 70 with the number of reals in [a, a+1)
which can be represented as

√
a1+
√

a2+· · ·+√a7 (1 ≤ a1 ≤ a2 · · · ≤ a7 ≤ 100).
Note that if two summations have the same value, they are counted only once.
From the table, we see that there are 1163570911 sums in the [48, 49), which
gives us a more precise pigeonhole upper bound for r(n, k) at 1/1163570911 =
8.6× 10−10, which is still several magnitudes away from r(n, k).

In Table 2, for each range, we list the number of gaps between consecutive
numbers in the range. From the table, we see that there are 7 gaps which have
magnitude at 10−19.

Table 1. Statistics on the summations of square roots

7 8 9 10 11 12

4 17 57 161 418 1003

13 14 15 16 17 18

2259 4865 10044 20061 38742 72903

19 20 21 22 23 24

133706 239593 420279 722739 1218852 2017818

25 26 27 28 29 30

3280805 5239096 8218857 12664315 19165803 28482325

31 32 33 34 35 36

41554376 59503519 83607939 115241837 155784865 206478894

37 38 39 40 41 42

268254403 341520055 425961992 520334126 622307266 728445926

43 44 45 46 47 48

834229563 934295227 1022797808 1093860379 1142175328 1163570911

49 50 51 52 53 54

1155526520 1117588507 1051539385 961294902 852549403 732208073

55 56 57 58 59 60

607649679 486014737 373475729 274666260 192383944 127511613

61 62 63 64 65 66

79264404 45637971 23914891 11119037 4410314 1398655

67 68 69 70

316043 40172 1476 1

Table 2. Statistics about the gaps

10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15 10−15 ∼ 10−14

7 47 1245 14139 129248

10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10 10−10 ∼ 10−9

1459473 13100265 132767395 1272832428 8256755966

10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5 10−5 ∼ 10−4

7766837445 463570895 30415764 2314151 176109

10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1

14890 1300 80 5

5 Conclusion remarks

In this paper we have proposed a space-efficient algorithm to compute r(n, k)
exactly. Our numerical data seem to suggest that the upper bound is closer to the
truth than the root separation bounds. Further investigations, both experimental
and theoretical, are needed.

References

1. Daniel Bernstein. Enumerating solutions to p(a) + q(b) = r(c) + s(d). Math. of
Comp., 70:389–394, 2001.

2. Peter Borwein. Computational Excursions in Analysis and Number Theory.
Springer-Verlag, 2002.

3. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily com-
putable separation bound for arithmetic expressions involving radicals. Algorith-
mica, 27(1):87–99, 2000.

4. Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke. The open problems
project: Problem 33. http://maven.smith.edu/˜orourke/TOPP/.

5. Noam Elkies. On a4 + b4 + c4 = d4. Math. of Comp., 51:825–835, 1988.
6. Donald Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,

1973.
7. Francesco Pappalardi. A survey on k-power freeness. In Proceeding of the Con-

ference in Analytic Number Theory in Honor of Prof. Subbarao, number 1 in Ra-
manujan Math. Soc. Lect. Notes Ser., pages 71–88, 2002.

8. Jianbo Qian and Cao An Wang. How much precision is needed to compare two
sums of square roots of integers? Inf. Process. Lett., 100(5):194–198, 2006.

9. Arnold Schönhage. On the power of random access machines. In Proc. 6th Inter-
nat. Colloq. Automata Lang. Program., volume 71 of Lecture Notes in Computer
Science, pages 520–529. Springer-Verlag, 1979.

10. Richard Schroeppel and Adi Shamir. A T = o(2n/2), S = o(2n/4) algorithm for
certain NP-complete problems. SIAM journal on Computing, 10(3):456–464, 1981.

11. A. Shamir. Factoring numbers in O(log n) arithmetic steps. Information Processing
Letters, 1:28–31, 1979.

