
On the Ultimate Complexity of Factorials ?

Qi Cheng

School of Computer Science, the University of Oklahoma, Norman, OK 73019,
USA.

Abstract

It has long been observed that certain factorization algorithms provide a way to
write the product of many different integers succinctly. In this paper, we study the
problem of representing the product of all integers from 1 to n (i.e. n!) by straight-
line programs. Formally, we say that a sequence of integers an is ultimately f(n)-
computable, if there exists a nonzero integer sequence mn such that for any n, anmn

can be computed by a straight-line program (using only additions, subtractions
and multiplications) of length at most f(n). Shub and Smale [12] showed that if
n! is ultimately hard to compute, then the algebraic version of NP 6= P is true.
Assuming a widely believed number theory conjecture concerning smooth numbers
in a short interval, a subexponential upper bound (exp(c

√
log n log log n)) for the

ultimate complexity of n! is proved in this paper, and a randomized subexponential
algorithm constructing such a short straight-line program is presented as well.

Classification of Topics: Computational and structural complexity.

1 Introduction

Computing the factorial function (n!) is an interesting problem in compu-
tational complexity. Because of the size of the number, computing n! cer-
tainly takes exponential time. One can instead study the modular factorial
n! mod m. Given an integer m ≥ 2, the smallest positive integer α such
that gcd(α! mod m,m) > 1 is a prime factor of m. For every integer n ≥ α,
gcd(n! mod m, m) is greater than 1, hence we can use binary search to find α
if we know how to compute n! mod m efficiently for any m and n. This shows

? The preliminary version of this paper appeared in the Proceeding of The 20th
International Symposium on Theoretical Aspects of Computer Science (STACS),
Lecture Notes in Computer Science 2607, Springer. This research is partially sup-
ported by NSF Career Award CCR-0237845

Email address: qcheng@cs.ou.edu (Qi Cheng).

Preprint submitted to Theoretical Computer Science 25 May 2004

that the integer factorization problem can be reduced to computing n! mod m.
It is very interesting to compare modular exponentiation with modular facto-
rial. In some sense, the reason that primality testing is easy while factoring is
hard is because modular exponentiation is easy but modular factorial is hard.
This statement may underestimate the complexity of modular factorial, as it
is believed that computing n! mod m is much harder than the integer factor-
ization problem. We do not even know whether computing modular factorial
is an NP-easy problem or not.

One approach we may take to compute n! mod m is to find a short straight-line
program for n!. This problem relates to the algebraic model of computation
[2,1,3]. In the algebraic model, it makes sense to ask whether the factorial
problem has a polynomial time algorithm, because in this context, to esti-
mate the time complexity, we only count the number of ring operations used
to compute n! regardless of the size of the operands. Sometimes, algebraic
complexity is also called non-scalar complexity. If the function n! has polyno-
mial time algebraic complexity, or equivalently, every integer n! has a short
straight-line program uniformly, then by doing modulo m in every step, we
would obtain a polynomial time algorithm to compute n! mod m on a Turing
machine, which is thought to be unlikely. Throughout this paper, we assume
that a straight-line program only contains ring operations. Shamir [11] showed
that if division (computing remainder and quotient) is allowed, then n! can
be computed by a straight-line program of polynomial length.

The ultimate complexity of a number was first studied in [12] by Shub and
Smale. They found a surprising relation between the ultimate complexity of n!
and the algebraic version of NP vs. P problem. We say that n! is ultimately
hard to compute, if there does not exist a non-zero integer sequence mn, such
that n!mn can be computed by straight-line programs of length (log n)c for an
absolute constant c. It was proved in [12]:

If n! is ultimately hard to compute, then the algebraic version of NP 6= P
is true.

Note that in the Turing model, proving that the modular factorial problem
is hard does not necessarily imply that NP 6= P . There is no corresponding
concept of the ultimate complexity in the Turing model.

So far the best algorithm we know computes n! in O(
√

n log2 n) ring opera-
tions over Z [14,4]. No better upper bound has been reported for the ultimate
complexity of n!. It has long been noticed that certain factorization algorithms
provide a way to write the product of many different primes succinctly. For
instance, Lenstra’s elliptic curve factorization method [10], performs algebraic
computation modulo the integer to be factored, but the operations remain the
same for all inputs of a certain size. The algebraic computation essentially gen-

2

erates a number with a lot of prime factors, since it factors almost all integers
of the size. However, these algorithms do not directly give us a straight-line
program to compute a product of n!, because

(1) Divisions are essential in these algorithms. For instance, in the elliptic
curve factorization method, splitting of an integer n happens precisely
when the inverse of a integer modulo n does not exist.

(2) More importantly, all the fast factorization algorithms are random in
nature. The time complexity of a randomized algorithm is an average
measurement. Practically the algorithms should work as expected, but
theoretically it is possible that for any integer n, there are bad choices of
random bits such that the algorithm will take exponential time to stop.
Hence for any choice of random bits of a certain length, there are integers
which cannot be factored.

In this paper we give a formal proof of a subexponential upper bound for the
ultimate complexity of n! under a widely believed number theory conjecture.
Our result is constructive in the sense that we can construct the straight-line
program from n in subexponential time. More precisely, our paper presents
a Monte Carlo algorithm (certainly in the Turing model), given a natural
number n as input, output a straight-line program which computes a non-zero
multiple of n! with probability better than a constant. The algorithm runs in
subexponential time, hence the output straight-line program will have at most
a subexponential length. Our result suggests that the algebraic complexity of
certain product of n! is not as high as the complexity of n!, even though the
product looks more random than n!. Note that by a simple counting argument,
we can prove that there exists a divisor of n! which has exponential straight-
line complexity. Our result also shows that the complexity of certain multiple
of n! is much closer to the integer factorization problem than the complexity
of n! itself.

It is interesting to note that we do not know whether there exists a subex-
ponential straight line program for the polynomial (x− 1) · · · (x− n), or any
polynomial with a lot of distinct integral roots. If we apply the same technique
in the paper to construct straight line program, we encounter obstacles from
the Uniform Boundedness Theorem [6].

1.1 Main Results

We call a number smooth if all of its prime factors are small. More precisely, a
number is said to be y-smooth, if all of its prime factors are less than or equal
to y. Let

Ψ(x, y) = |{n ≤ x : n is y − smooth}|.

3

Throughout this paper, log denotes the natural logarithm. Let Lx[c] denote

ec
√

log x log log x. The following proposition about Ψ(x, Lx[a]) was proved in [5].

Proposition 1 For any constant a, Ψ(x, Lx[a]) = xLx[−1/(2a) + o(1)].

It was conjectured that the smooth number in some short interval is as dense
as in a large interval. In particular,

Conjecture 1 For any constant a > 0,

Ψ(p + 1 + 2
√

p, Lp[a])−Ψ(p + 1− 2
√

p, Lp[a]) =
√

pLp[−1/(2a) + o(1)].

Though this conjecture has not been proved yet, it is widely believed to be true.
See [10,9] for details. In fact, Lenstra’s elliptic curve factorization algorithm
relies on this conjecture to achieve the subexponential time complexity.

Theorem 1 Assume that Conjecture 1 is true. Then there exist absolute con-
stants c1 and c2 such that for any natural number n, a non-zero multiple of
n! can be computed by a straight-line program of length at most Ln[c1]. Fur-
thermore, the straight-line program can be constructed in time Ln[c2] by a
probabilistic Turing machine.

The essential part of the proof of Theorem 1 is based on Lenstra’s elliptic
curve factorization method. Let E be an elliptic curve y2 = x3 + ax + b with
a, b ∈ Z and Ps(x) be the univariate s-th division polynomial of E . Given n
and x, Pn(x) can be computed by a straight-line program of length O(log n)
using 1, x, a and b as constants. If x, a and b are integers less than n, then
Pn(x) can be calculated by O(log n) arithmetic operations using 1 as the only
constant. Let x be an integer which is not the abscissa of a torsion on E , i.e.
Pi(x) 6= 0 for any positive integer i. For any prime p, we have p|Ps(x) if s is
divisible by |E(Fp)|, where E is the reduction of E at p and x mod p is the
abscissa of a point on E(Fp) (x may or may not be an abscissa of a point on
E(Q)).

If the reduction of E at a random prime p takes a random number between
p − 2

√
p + 1 and p + 2

√
p + 1 as the order over Fq, then with probability

greater than 1 over a subexponential function on log p, the reduction curve
has a smooth order over Fp. Furthermore, given an elliptic curve E/Fp, a
random integer x mod p becomes an abscissa of a point on E(Fp) with a
constant probability (about 1/2). Hence if S is a large smooth number and
x is an arbitrary integer, PS(x) contains a lot of distinct prime factors. In
order to get a multiple of n!, we only need to collect subexponentially many
elliptic curves and evaluate their S-th division polynomials at polynomially
many integers. We will show that randomly chosen elliptic curves and integers
suffice. The effects of the global torsions will be carefully controlled.

4

This paper is organized as follows. In Section 2, we define the straight-line
program and the ultimate complexity, and prove a lemma about bipartite
graphs. In Section 3, we review some facts about elliptic curves. In Section 4,
we formally prove the main theorem. We conclude this paper by a discussion
section.

2 Preliminaries

A straight-line program of an integer is a sequence of ring operations, which
outputs the integer in the last operation. Formally

Definition 1 A straight-line program of an integer m is a sequence of in-
structions

z ← xαy

where α ∈ {+,−, ∗}, x, y are two previously appeared symbols or 1 and z is a
new symbol, such that after we execute the instructions sequentially, the last
symbol will represent the value of m. The length of the program is the number
of instructions. The length of the shortest straight-line program of m is called
the straight-line complexity of m.

An integer n has a straight-line complexity at most 2 log n. In some cases,
a straight-line program is a very compact description of an integer. It can
represent a huge number in small length. For example, the number nm can be
computed using the repeated squaring technique and hence has a straight-line
complexity at most 2 log n + 2 log m.

Definition 2 Let u be a real number. An integer a is ultimately u-computable,
if there exists a nonzero integer sequence m such that am can be computed by a
straight-line program of length at most u. The smallest u is called the ultimate
complexity of a. Let f be a function in R → R. A sequence of integers an is
ultimately f -computable, if for any n, there exists a nonzero integer mn such
that anmn is ultimately f(n)-computable.

In this paper, we study the ultimate complexity of n!. First we show that this
problem can be reduced to studying the ultimate complexity of the product
of primes up to n.

Lemma 1 Let pn be the n-th prime number. If the sequence αn = p1p2 · · · pm,
where pm is the largest prime less than or equal to n, can be ultimately com-
puted by a straight-line program of length f(n), then n! can be ultimately com-
puted by a straight-line program of length f(n) + 2 log n.

5

Proof: This follows from a simple fact that n!|(αn)n. Note that the exponent
n is the minimum possible. 2

Now we prove a lemma about bipartite graphs. Given a bipartite graph G =
(X ∪ Y,E) (E ⊆ X × Y), we say that a subset A ⊆ X dominates a subset
B ⊆ Y , if every vertex in B is adjacent to at least one vertex in A.

Lemma 2 For a simple undirected bipartite graph G = (X ∪ Y, E), let m =
|X| and n = |Y |. If every vertex in X has degree greater than d = dn/re
where 2 < r < n

2 log m
, then there exists a subset S ⊆ Y , with cardinality

g = d2r log me, which dominates X. Moreover, if we randomly choose a subset
of Y with cardinality g, it dominates X with probability greater than 1− 1

m
.

Proof: From X × Y , we construct a new bipartite graph X × Y as follows. Y
is the set of all the subsets of Y with g elements. For any u ∈ X and v ∈ Y , u
and v are joined by an edge iff in X × Y , u is adjacent to at least one vertex
in v ⊆ Y .

For every u ∈ X, its degree in X × Y is greater than
(

n
g

)
−
(

n−d
g

)
. The total

number of edges in X × Y is thus greater than m(
(

n
g

)
−
(

n−d
g

)
). The average

degree of elements in Y is greater than

m(
(

n
g

)
−
(

n−d
g

)
)(

n
g

) = m(1−
(
n− d

g

)
/

(
n

g

)
).

We have

(
n− d

g

)
/

(
n

g

)
=

(n− d)!/(n− d− g)!

n!/(n− g)!

=
(n− d)(n− d− 1) · · · (n− d− g + 1)

n(n− 1) · · · (n− g + 1)

< (1− d

n
)g < (1− 1

r
)2r log m

<
1

m2
.

Suppose that x|Y| vertices in Y have degree less than m. The average degree of
vertices in Y is less than m(1−x)+(m−1)x = m−x. Hence m−x > m(1− 1

m2).
This implies that x < 1

m
. 2

This lemma will be used in several places in the paper. First we present a
simple consequence of the lemma.

6

Corollary 1 Let p be a prime. If we randomly pick n = d6 log pe integers
a1, a2, · · · , an between 2 and p inclusive, then with probability at least 1− 2 log p

p
,

for every prime q, 2 < q ≤ p, at least one of integers in {a1, a2, · · · , an} is a
quadratic nonresidue modulo q.

Proof: For every prime q, 2 < q ≤ p, at most p/3 of the integers between 2
and p inclusive have prime factor q. For the rest of integers, half of them are
quadratic nonresidues modulo q. Hence at least p/3 of the integers in the same
range are quadratic nonresidues modulo q. By replacing r with 3 in Lemma 2
we obtain the corollary, as there are (1 + ε) p

log p
primes less than p. 2

3 Elliptic Curves

An elliptic curve is a smooth cubic curve. Let k be a field. If the characteristic
of k is not 2 or 3, we may assume that the elliptic curve is given by an equation
of the form

y2 = x3 + ax + b, a, b ∈ k.

The discriminant of this curve is defined as −16(4a3 + 27b2), whose essential
part is the discriminant of the polynomial x3 + ax + b. It should be non-zero
as the curve is smooth. For detailed information about elliptic curves, we refer
to Silverman’s book [13].

The set of points on an elliptic curve consists of the solution set of the defini-
tion equation plus a point at infinity. These points form an abelian group with
the infinity point as the identity. We call a point a torsion if it has a finite
order in the group. The abscissa of the torsions of order n > 3 are the solutions
of P E

n (x), the n-th division polynomial of E . Sometimes we omit the super-
scription E if no confusion is possible. These polynomials can be computed
recursively as follows.

P1 = 1

P2 = 1

P3 = 3x4 + 6ax2 + 12bx− a2

P4 = 2(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)

P4n+1 = 16(x3 + ax + b)P2n+2P
3
2n − P2n−1P

3
2n+1

P4n+2 = P2n+1(P2n+3P
2
2n − P2n−1P

2
2n+2)

P4n+3 = P2n+3P
3
2n+1 − 16(x3 + ax + b)P2nP

3
2n+2

P4n+4 = P2n+2(P2n+4P
2
2n+1 − P2nP

2
2n+3)

7

We have

Proposition 2 For any positive integers n and x, the integer P E
n (x) can be

computed by a straight-line program of length O(log n+log(|x|+1)+ log(|a|+
1) + log(|b|+ 1)), where E is the elliptic curve y2 = x3 + ax + b with a, b ∈ Z.

See [6] for the proof of (a stronger version of) the proposition. It is based on
the ideas of repeated doubling and dynamical programming.

Proposition 3 Let E : y2 = x3 + ax + b be an elliptic curve defined over Z.
Assume that p does not divide the discriminant. If x is an integer and

(1) x mod p is the abscissa of a point on E(Fp),
(2) the point (x,

√
x3 + ax + b) is not a torsion on E,

then Pl(x) 6= 0 and p|Pl(x), where l is any non-zero multiple of |E(Fp)|.

Proof: For any l, Pl(x) 6= 0 since x is not a torsion. We have p|Pl(x), since the
point with x mod p as its abscissa has order dividing |E(Fp)| and l. 2

Let E : y2 = x3 +ax+ b be an elliptic curve defined over Z. The torsion points
on E with integral abscissa (thus y-coordinates are integers or quadratic al-
gebraic numbers) have order at most 18, as shown in the celebrated Uniform
Boundedness Theorem in the quadratic number fields [7,8]. Hence such in-
tegers must be the roots of some Pn(x) where n ≤ 18, or of x3 + ax + b.
The maximal possible roots of those equations are bounded by the sum of
the degrees of the equations, which is an absolute constant. Let B denote this
constant. One can take B = 1035. Define

RE(p) = {x|x ∈ Z, 1 ≤ x ≤ p, (x,
√

x3 + ax + b) is not a torsion on E}.

Then |RE(p)| ≥ p−B. Given an integer, we can decide whether the integer is
in RE(p) in polynomial time. From Lemma 2, we conclude

Corollary 2 Let p be a prime and E : y2 = x3 + ax + b be an elliptic curve
defined over Z with 1 ≤ a ≤ p− 1 and 1 ≤ b ≤ p− 1. If n = d6 log pe integers
x1, x2, · · · , xn are randomly chosen from RE(p), then with probability greater
than 1− 2 log p

p
, for any prime q satisfying 7B < q ≤ p and q 6 |4a3 + 27b2, one

of xi mod q is the abscissa of a point on the reduction of E at q.

Proof: We construct a bipartite graph P × Y as follows. The set P consists
of all the prime numbers from 7B to p which are not the prime factors of
4a3 + 27b2. Let Y = RE(p). For any q ∈ P and x ∈ Y , draw an edge between
q and x iff x3 + ax + b is a quadratic residue modulo q.

For a prime q, there are at least q− 2
√

q + 1 many points on the reduction of

8

E at q. Hence there are at least
q−2

√
q

2
many x between 1 and q inclusive such

that x3+ax+b are quadratic residues modulo q. Among them,
q−2

√
q

2
−B many

are not torsion points. To count such elements between 1 and p inclusive, we
need to multiple the number by bp

q
c. Thus the degree of q in P is greater than

(
q−2

√
q

2
− B)× bp

q
c > q

3
× bp

q
c = p

3
for q > 7B. The theorem now follows from

Lemma 2. 2

The j-invariant of the curve y2 = x3 + ax + b is defined as j = 1728 4a3

4a3+27b2
.

Two elliptic curves with a same j-invariant are isomorphic over the algebraic
closed field. For elliptic curves defined over a prime finite field Fp where p > 3,
two curves with a same j-invariant may not be isomorphic. If j 6= 0 or 1728,
there are exactly two isomorphic classes which have the same j-invariant, one
can be represented by y2 = x3 +kx+k and the other by y2 = x3 + c2kx+ c3k,
where k = 27j

4(1728−j)
and c is a quadratic nonresidue modulo p. There are

different number of points over the two classes of curves. There are at most 6
isomorphic classes with j = 0, and at most 4 isomorphic classes with j = 1728.

We are interested in counting the number of isomorphic classes of elliptic
curves with the number of points coming from a given set. In [10] the following
proposition was proved.

Proposition 4 There exist two constants c1, c2 such that if A is a set of
integers between p + 1 − √p and p + 1 +

√
p, the number of non-isomorphic

classes of elliptic curves defined over Fp whose number of points over Fp are
in A is

c1
√

p(|A| − 2)/log p ≤ N ≤ c2
√

p|A|log p(log log p)2.

4 Proof of the Main Theorem

Our goal is to construct a straight-line program of some multiple of αp =
2 × 3 × 5 × · · · × p in Lp[c1] time for some constant c1. Firstly, we compute
a number S = 2e1 × 3e2 · · · × pes

s , where ps is the maximal prime less than or
equal to Lp[1] and for every 1 ≤ i ≤ s, pei

i is the least pi-power greater than
p + 1 + 2

√
p. Obviously we can compute S in time Lp[2 + o(1)].

Secondly, we randomly choose l = d6 log pe integers c1, c2, · · · , cl between 2
and p inclusive. We call the step successful if for every prime 2 < q ≤ p, at
least one of the integers is a quadratic nonresidue mod q. The step succeeds
with probability greater than 1− 2 log p

p
according to Lemma 1.

Denote by D the set of elliptic curve {y2 = x3 + ax + a|1 ≤ a ≤ p} ∪ {y2 =
x3 + ac2

i x + ac3
i |1 ≤ i ≤ l, 1 ≤ a ≤ p}. Construct a bipartite graph X × D

9

as follows. X consists of all the primes between 7B + 1 and p inclusive. For
any prime q ∈ X and any elliptic curve E ∈ D, connect q and E by an edge
iff the reduction curve E of E at q is non-singular, and the order of E(Fq) is
Lp[1]-smooth.

Lemma 3 The degree of every element in X is greater than pLp[−1/2+o(1)]
under Conjecture 1.

Proof: For any prime 7B < q ≤ p, consider the subset of D:

Dq = {y2 = x3+ax+a|1 ≤ a ≤ q}∪{y2 = x3+ac2
i x+ac3

i |1 ≤ i ≤ l, 1 ≤ a < q}.

The j-invariants of y2 = x3 + ax + a and y2 = x3 + ac2
i x + ac3

i are 1728 4a
4a+27

.
If one of integers in {c1, c2, · · · , cn} is a quadratic nonresidue modulo q, then
there exist representations of all the isomorphic classes of elliptic curves over
Fq in Dq, except for the curves with j-invariants 0 or 1728. There are at least√

q

Lq [1/2+o(1)]
many Lq[1]-smooth integers between q − 2

√
q + 1 and q + 2

√
q + 1

according to Conjecture 1. Hence there are at least
√

q
√

q

Lq [1/2+o(1)]
= q

Lq [1/2+o(1)]

curves in Dq which have Lq[1]-smooth orders over Fq according to Proposi-
tion 4. In the set D, we need to multiply this number by bp

q
c, i.e. there are

at least q
Lq [1/2+o(1)]

bp
q
c > p

Lp[1/2+o(1)]
curves in D have Lp[1]-smooth order over

Fq. Hence the degree of q in X ×D is greater than p
Lp[1/2+o(1)]

. 2

Now we proceed to the third step. We randomly choose w = dLp[1]e curves
E1, · · · , Ew from D. We call the step successful if for any prime 7B ≤ q ≤ p, q
does not divide the discriminant of at least one of the curves in {E1, · · · , Ew}
and the reduction of this curve at q has a Lp[1]-smooth order over Fq. In the
other words, in graph X ×D, {E1, · · · , Ew} ⊆ D dominates X. Since Lp[1] >
2 log pLp[1/2 + o(1)], the step succeeds with probability at least 1 − 2 log p

p

according to Lemma 2 and Lemma 3.

In the fourth step, for each 1 ≤ i ≤ w, we pick h = d6 log pe random integers
xi,1, xi,2, · · · , xi,h in REi

(p). We call the i-th sub-step successful, if for any prime
7B < q ≤ p, at least one integer in {xi,1, xi,2, · · · , xi,h} modulo q is the abscissa
of a Fq-point in the reduction curve of Ei at q. The successful probability for
each sub-step is greater than 1 − 2 log p

p
according to Corollary 2. Hence the

successfully probability for this step is greater than (1− 2 log p
p

)w.

Lemma 4 All these four steps are successful with probability

(1− 2 log p

p
)Lp[1/2+o(1)] > 1/3.

If all the four steps are successful, then we can get a multiple of αp by evaluat-

10

ing the S-th division polynomials of E1, · · · , Ew on x1,1, x1,2, · · · , x1,h; · · · ; xw,1,
· · · , xw,h respectively and multiplying the results together. Now we are ready
to write the straight-line program for a multiple of 2× 3× 5× · · · × p.

(1) Start by computing the product of all the primes less than 7B. Let the
result be T1.

(2) Add instructions to compute

P E1
S (x1,1), · · · , P E1

S (x1,h); · · · ; P Ew
S (xw,1), · · · , P Ew

S (xw,h).

(3) Add instructions to compute

T2 ←
∏

1≤i≤w,1≤k≤h

P Ei
S (xi,k).

(4) Add T ← T1 × T2 into the straight-line program.

Based on the analysis in this paper, it can be verified that the above straight-
line program computes a product of αp and it has subexponential length.

5 Discussion

The relation between ultimate complexity and integer factorization can be
further explored.

Firstly, can we derive a factorization algorithm from a straight-line program
for a multiple of n!? The only problem here is that the multiple of n!, i.e.
n!mn, may contain primes greater that n. We must try to restrict the integer
mn such that it only has primes less than n. It seems hard to do so with the
algorithm in this paper.

Secondly, is the lower bound of the ultimate complexity of n! also subexponen-
tial? Since this problem is closely related to the integer factorization problem,
which is believed not to have a polynomial time algorithm, we suspect that
the answer to this question is positive.

The existence of a short straight-line program for a large number does not
imply that we can construct the short straight-line program in reasonable
time. Given two integers m,n and a prime p, if m mod p is the generator of
F∗

p and p 6 |n, then there exists a short straight-line program for a power of
m which is congruent to n modulo p. But we do not know how to construct
such a straight-line program from m, n and p, as the problem is equivalent to
computing the discrete logarithm problem over Fp. We believe that it might
be possible that for some n, n! or a multiple of n! have very short straight-line
programs, however constructing the program would be very hard.

11

References

[1] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and
Real Computation. Springer-Verlag, 1997.

[2] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions and
universal machine. Bulletin of the American Mathematical Society, 21(1), 1989.

[3] Peter Burgisser. The complexity of factors of multivariate polynomials. In Proc.
42th IEEE Symp. on Foundations of Comp. Science, 2001.

[4] Peter Burgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic
Complexity Theory, volume 315 of Grundlehren der mathematischen. Springer-
Verlag, 1997.

[5] E.R. Canfield, P. Erdos, and C. Pomerance. On a problem of Oppenheim
concerning “Factorisatio Numerorum”. J of number theory, pages 1–28, 1983.

[6] Qi Cheng. Some remarks on the L-conjecture. In Proc. of the 13th Annual
International Symposium on Algorithms and Computation (ISAAC), volume
2518 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[7] S. Kamienny. Torsion points on elliptic curves and q-coefficients of modular
forms. Inventiones Mathematicae, 109:221–229, 1992.

[8] M. Kenku and F. Momose. Torsion points on elliptic curves defined over
quadratic fields. Nagoya Mathematical Journal, 109:125–149, 1988.

[9] A. Lenstra and H. W. Lenstra Jr. Handbook of Theoretical Computer Science
A, chapter Algorithms in Number Theory, pages 673–715. Elsevier and MIT
Press, 1990.

[10] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics,
126:649–673, 1987.

[11] A. Shamir. Factoring numbers in O(log n) arithmetic steps. Information
Processing Letters, 1:28–31, 1979.

[12] M. Shub and S. Smale. On the intractability of Hilbert’s nullstellensatz and an
algebraic version of “P=NP?”. Duke Math. J., 81:47–54, 1995.

[13] J.H. Silverman. The arithmetic of elliptic curves. Springer-Verlag, 1986.

[14] V. Strassen. Einige resultate uber berechnungskomplexitat. Jber. Deutsch.
Math.-Verein, 78(1):1–8, 1976/77.

12

