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Abstract

Every finite field has many multiplicative genera-
tors. However, finding one in polynomial time is
an important open problem. In fact, even find-
ing elements of high order has not been solved
satisfactorily. In this paper, we present an algo-
rithm that for any positive integer c and prime
power q, finding an element of order exp(Ω(

√
qc))

in the finite field Fq(qc−1)/(q−1) in deterministic
time (qc)O(1). We also show that there are
exp(Ω(

√
qc)) many weak keys for the discrete log-

arithm problems in those fields with respect to
certain bases.

1 Introduction

It is an important property of a finite field that
for every prime power q, there is a generator for
the group F∗q = Fq − {0}. In fact, there are as
many as φ(q−1) = Ω(q/ log log q) [10, Chapter 1,
Theorem 5.1] generators, where φ is Euler’s phi
function. Hence if we randomly select an element
in the field, with a non negligible probability, the
element has order q−1. Nevertheless, no polyno-
mial time algorithm is known to find an element
of that order. The main difficulty lies in proving
the order of an element, for which all the known
approaches require the complete factorization of
q − 1. It is widely believed that factoring inte-
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gers is difficult. We comment that this problem
bears some similarities with many hard explicit
construction problems in computer science. In
those problems, we want to construct an object
satisfying certain property, which holds by a ran-
domly chosen object with high probability. It is
however hard to certify that a given object has
the property, thus one can not design a fast algo-
rithm to construct such an element, even allowing
randomness.

Another related question is on weak keys of
discrete logarithms in finite fields. The discrete
logarithm problem in a finite field Fq is, given
α, β ∈ Fq, find an integer x so that αx = β
(such x is known to exist in applications). In
practice, α is often a primitive element or of high
order, and α is fixed but β varies in Fq. For
most q, the discrete logarithm problem is believed
to be hard, hence form the security foundation
of several public key cryptosystems. In those
cryptosystems, x is often a secret key. Even
though the discrete logarithm problem could be
hard in Fq (for a fixed α), the integer x could be
easily computed for some β ∈ Fq, so such x are
called weak keys for α. These weak keys should
certainly be avoided as being used as secret keys.
Hence it is important in practice to know how
many weak keys there are.

1.1 Previous work Given the difficulty of
finding an element of full order, researchers be-
gin to study the problem of finding an element of
sufficiently high order. The attentions focus on
the following problem: Fix a prime power q, find-
ing high order elements in the extension Fqn of
Fq. If no constraint is put in the extension degree
n, very few results are known. In [7], Gao pre-
sented an efficient algorithm which constructs an
element of order exp(Ω((log n)2/ log log n)). His
algorithm assumes some reasonable but unproved
conjecture. Voloch [11] proposed a method which



constructs an element of order exp(Ω((log n)2)).
If we are allowed to choose degrees of exten-

sions, then we can construct elements of consid-
erably higher order. One approach to construct
elements of high order is through the Gauss pe-
riod [8, 13, 14, 1].

Proposition 1.1. Let q be a prime power. Let r
be a prime such that q is a primitive root modulo
r. Let β be a primitive r-th root of unity in Fqr−1 .
Denote (r − 1)/2 by n. Then the Gauss period
α = β + β−1 ∈ Fqn has order exp(Ω(

√
n)).

To prove that the construction works for in-
finitely many n, one needs to assume that the
Artin conjecture holds for q. The Artin conjec-
ture claims that if an integer a is neither −1 nor
a perfect square, then there are infinitely many
primes p such that a is a primitive root modulo p.
It has not been proven for any a. The following
proposition summarizes another approach based
on the Kummer and Artin-Schreier polynomials
[5].

Proposition 1.2. Let α be an element of degree
d over Fq. If it satisfies

xq + ax+ b = 0,

where a ∈ F∗q and b ∈ F∗q are nonzero, then it has
order greater than 2d.

In fact, if a = −1 and q is a prime, then
xq + ax+ b = 0 is irreducible over Fq, it becomes
the Artin-Schreier polynomial. If a 6= −1, replace
x by y − b

a+1 , we get yq − ay = 0, which is the
case of the Kummer polynomial. Note that y will
have small order, but x has very large order.

Corollary 1.1. Given a prime power q and
a prime p such that p does not divide q, we
can construct an element in Fqp(p−1) with order
exp(Ω(p)) in randomized time (p log q)O(1) or
deterministic time (pq)O(1).

The above corollary provides an algorithm
which constructs elements of order exp(Ω(

√
n))

in Fqn for infinitely many n without assuming
any conjecture. However the approach is based
on the subfield structure. For a fixed prime q,
n = p(p− 1) can not be prime when p > 2.

1.2 Our results In this paper, we contribute
in two ways. We first present a new way to
construct elements of high order. It is based
on subspace polynomials (also called q-linearized
polynomials) [9]. Subspace polynomials have
found many applications in theoretical computer
science [4, 2, 3], especially in explicit construction
problems. Our approach can be thought as
a generalization of Proposition 1.2. Our main
theorem is as follows:

Theorem 1.1. Assume that c ≥ 2 and xc +
a1x

c−1 + · · · + ac ∈ Fq[x] is primitive. Let α
be a root of the polynomial

x
qc−1
q−1 + a1x

qc−1−1
q−1 + a2x

qc−2−1
q−1 + · · ·+ ac.

Then α has degree d = (qc − 1)/(q − 1) over Fq

and α has order greater than exp(Ω(
√
qc)).

Corollary 1.2. Given a prime power q and
a positive integer c, we can construct in time
polynomial in qc an element in F

q
qc−1
q−1

of order

exp(Ω(
√
qc)).

Proof. We can search for a primitive polynomial
over Fq of degree c in time (qc)O(1).

Our approach constructs an element of order
exp(Ω(

√
n)) in Fqn for infinite many n without

assuming any conjecture, and it is not based
on subfield structures of Fqn , since both q and
(qc − 1)/(q − 1) can be prime.

For the α constructed in Theorem 1.1, we
show that the number of weak keys is at least
exp(Ω(

√
n)). Those weak keys have small sum-

of-digits in base q representations. See [6] for
the discussion on the advantage and disadvantage
of using exponents of small sum-of-digits in the
discrete logarithm problem.

2 High order elements

We begin with a weaker result which generalizes
Proposition 1.2. The proof of this simpler result
illustrates some of the main ideas used in our
later stronger result.

Theorem 2.1. Let c be a positive integer and let
α be an element of degree d > qc−1 over Fq. If α
satisfies

xqc

= a1x
qc−1

+ a2x
qc−2

+ · · ·+ acx,



where a1, a2, · · · , ac are in Fq, then α + 1 has
order greater than(

d+ b d−1
qc−1 c
d

)
.

Proof. It is easy to see that for any 1 ≤ i ≤ d,
we have

(α+ 1)qi

= ai,1α
qc−1

+ai,2α
qc−2

+ · · ·+ai,cα+ 1,

where (ai,1, ai,2, · · · , ai,c) ∈ Fc
q and for any i, j,

1 ≤ i < j ≤ d, we have

(ai,1, ai,2, · · · , ai,c) 6= (aj,1, aj,2, · · · , aj,c).

We claim that if (y1, y2, · · · , yd) and
(z1, z2, · · · , zd) are different non-negative
integer vectors with weights

∑
i yi and

∑
i zi

bounded by b d−1
qc−1 c, then

d∏
i=1

(α+ 1)yiq
i

6=
d∏

i=1

(α+ 1)ziq
i

.

To prove it, we need to show

d∏
i=1

(ai,1α
qc−1

+ ai,2α
qc−2

+ · · ·+ ai,cα+ 1)yi

6=
d∏

i=1

(ai,1α
qc−1

+ ai,2α
qc−2

+ · · ·+ ai,cα+ 1)zi .

Since α has degree d which is greater than

max(
∑

i

yi,
∑

i

zi)qc−1,

it is equivalent to show

d∏
i=1

(ai,1x
qc−1

+ ai,2x
qc−2

+ · · ·+ ai,cx+ 1)yi

6=
d∏

i=1

(ai,1x
qc−1

+ ai,2x
qc−2

+ · · ·+ ai,cx+ 1)zi

in Fq[x]. Since the non-negative integer vec-
tors (y1, · · · , yd) and (z1, · · · , zd) have weights at
most (d − 1)/qc−1 < qc/qc−1 = q, we deduce
that he desired non-identity is equivalent to the
following non-identity

d∏
i=1

(ai,1xc−1 + ai,2xc−2 + · · ·+ ai,cx0 + 1)yi

6=
d∏

i=1

(ai,1xc−1 + ai,2xc−2 + · · ·+ ai,cx0 + 1)zi

in Fq[x0, x1, · · · , xc−1], which is true because of
the unique factorization in Fq[x0, x1, · · · , xc−1].
The order of α+1 is thus greater than the number
of non-negative integer vectors of length d and
weight at most b d−1

qc−1 c.

If d = qc − 1, then the above result can be
greatly improved. First there is a well-known fact
about subspace polynomials.

Lemma 2.1. The q-polynomial (a0x + a1x
q +

a2x
q2

+ · · · + akx
qk

)/x ∈ Fq[x] is irreducible if
and only if a0 + a1x + · · · + akx

k is a primitive
polynomial in Fq[x].

For a q-polynomial r(x) = a0x+a1x
q + · · ·+

akx
qk

over Fq, the quotient

r(x)
x

= a0 + a1x
q−1 + · · ·+ akx

qk−1

is called quasi-irreducible if

r∗(x) = a0 + a1x
q−1
q−1 + · · ·+ akx

qk−1
q−1

is irreducible over Fq and r∗(x) 6= x. Note that

r(x)
x

= r∗(xq−1).

Thus, if r(x)/x is irreducible, then it is
quasi-irreducible. The converse may not be
true. Furthermore, if (r∗1(x), r∗2(x)) = 1,
then there exists polynomials α1(x) and α2(x)
such that r∗1(x)α1(x) + r∗2(x)α2(x) = 1. So
r∗1(xq−1)α1(xq−1)+r∗2(xq−1)α2(xq−1) = 1, which
implies

(
r1(x)
x

,
r2(x)
x

) = 1.

For a prime power q and a positive integer k,
define

R(q, k) =
{
r(x) ∈ Fq[x]|r(x) is a monic q−polynomial of

degree qk and r(x)/x is quasi− irreducible
}
.

Certainly |R(q, k)| ≤ qk. The above lemma
shows that

|R(q, k)| ≥ φ(qk − 1)/k.

Theorem 2.2. Let c ≥ 2 be a positive integer
and let xc+a1x

c−1+· · ·+ac ∈ Fq[x] be a primitive



polynomial. Let α be a non-zero root of the q-
polynomial

xqc

+ a1x
qc−1

+ a2x
qc−2

+ · · ·+ acx.

Then α has degree d = qc − 1 over Fq and α has
order greater than(|R(q, bc/2c)|+ qc−1

qbc/2c

|R(q, bc/2c)|

)
= exp(Ω(

√
qc))

Proof. The primitive polynomial assumption and
the lemma imply that α has degree d = qc − 1.
It is then easy to see that for any 0 ≤ j ≤ d− 1,
we can write

αqj

= aj,1α
qc−1

+ aj,2α
qc−2

+ · · ·+ aj,cα,

where (aj,1, aj,2, · · · , aj,c) ∈ Fc
q − {0}c and for

0 ≤ j ≤ d − 1, (aj,1, aj,2, · · · , aj,c) runs over
all the element in Fc

q − {0}c, since α has qc − 1
conjugates over Fq.

Denote |R(q, bc/2c)| by m. For 1 ≤ i ≤ m,
let ri(x) ∈ Fq[x] be an enumeration of polyno-
mials in R(q, bc/2c), and ji be the correspond-
ing integer such that αqji = ri(α). In particular,
r∗i (x) 6= x. We claim that if (y1, y2, · · · , ym) and
(z1, z2, · · · , zm) are different in (Z≥0)m with

max(
m∑

i=1

yi,

m∑
i=1

zi) <
qc − 1
qbc/2c ,

then
m∏

i=1

(α)yiq
ji 6=

m∏
i=1

(α)ziq
ji
.

To prove it, we need to show
m∏

i=1

(ri(α))yi 6=
m∏

i=1

(ri(α))zi .

Since

max(
m∑

i=1

yi,

m∑
i=1

zi)qbc/2c < qc − 1 = d,

it is equivalent to showing
m∏

i=1

(ri(x))yi 6=
m∏

i=1

(ri(x))zi ,

that is,

x
P

i yi−
P

i zi

m∏
i=1

(ri(x)/x)yi 6=
m∏

i=1

(ri(x)/x)zi .

This is true by unique factorization. Thus the
order of α is greater than or equal to the number
of non negative integer solutions of

m∑
i=1

yi <
qc − 1
qbc/2c .

This concludes the proof.

2.1 Proof of Theorem 1.1

Theorem 2.3. Assume that c ≥ 2 and xc +
a1x

c−1 + · · · + ac ∈ Fq[x] is primitive. Let e be
a positive divisor of q − 1. Let β be a root of the
polynomial

fe(x) = x
qc−1

e +a1x
qc−1−1

e +a2x
qc−2−1

e + · · ·+ac.

Then β has degree d = (qc−1)/e and β has order
greater than exp(Ω(

√
qc)).

Proof. Write β = αe. Then, α is a non-zero root
of the q-polynomial

xqc

+ a1x
qc−1

+ · · ·+ acx,

and
ord(β) =

1
e

ord(α).

If fe(x) were reducible, then f(xe) = (xqc

+
a1x

qc−1
+ a2x

qc−2
+ · · · + acx)/x would be re-

ducible, which is a contradiction. We can now
apply the previous theorem.

The case e = 1 is just Theorem 2.2. Taking
e = q − 1, we obtain Theorem 1.1.

2.2 The case of c = 2 In the case c = 2, the
order can be significantly improved.

Theorem 2.4. Assume that α is an element of
degree d over Fq and it satisfies

αq+1 − a1α− b1 = 0

The order of α is at least 5.8d.

Proof. We define an iterative sequence:

ai+1 = aia1 + bi

bi+1 = aib1

Or equivalently(
ai+1

bi+1

)
=
(
a1 1
b1 0

)(
ai

bi

)



Note that

αq =
a1α+ b1

α

αq2
=

a2α+ b2
a1α+ b1

...

αqd−1
=

bd−1

ad−2α+ bd−2

αqd

= α.

Also note that the condition αqd

= α implies that
ad−1 = bd = 0 and ad = bd−1. We may assume
that a0 = 1, b0 = 0. We claim that if we view
(ai, bi), 0 ≤ i ≤ d− 1 as points on the projective
line P 1(Fq), then they are distinct. Otherwise for
some 0 ≤ i < j ≤ d−1, we have (ai, bi) = (aj , bj)
and

α(q−1)(qi+1+···+qj) = (
ajα+ bj
aiα+ bi

)q−1 = 1.

This implies that αqj−i

= α. Since α has degree d
over Fq, we must have d|(j− i). The distinctness
of these projective points implies that aibi 6= 0
for 1 ≤ i ≤ d− 2.

For a list of integers (n0, n1, · · · , nd−1) we
have

αn0+n1q+n2q2+···+nd−1qd−1

= αn0−n1(a1α+ b1)n1−n2 · · ·
(ad−2α+ bd−2)nd−2−nd−1b

nd−1
d−1 .

Consider the set of integer lists:

S =
{

(n0, n1, · · · , nd−1) ∈ Zd
∣∣nd−1 = 0,∑

ni−ni−1≥0

ni − ni−1 ≤ (d− 1)/2,

∑
ni−ni−1<0

ni−1 − ni ≤ (d− 1)/2
}
,

It follows from the unique factorization property
of Fq[x] that as (n0, n1, · · · , nd−1) runs over the
elements of S, the elements

αn0+n1q+n2q2+···+nd−1qd−1

are distinct. So the order of α is greater than or
equal to the cardinality of S, which is equal to

the cardinality

T =
{

(m0,m1, · · · ,md−2) ∈ Zd−1
∣∣∑

mi≥0

mi ≤ (d− 1)/2

∑
mi<0

|mi| ≤ (d− 1)/2
}
.

The following set is a subset of T :(m0,m1, · · · ,md−2) ∈ Zd−1
∣∣ ∑mi≥0mi = b(d− 1)/2c∑

mi<0 |mi| = b(d− 1)/2c∑
mi<0 1 = d−

 ,

whose cardinality is(
d− 1
d−

)(
b(d− 1)/2c

d−

)(
b(d− 1)/2c+ (d− 1− d−)− 1

d− 1− d−

)
,

which is at least 5.8d if we set d− = 0.292d.

Corollary 2.1. Given a prime power q and an
integer t|q+1, we can construct an element in Fqt

with order exp(Ω(t)) in deterministic time qO(1),
or randomized time (t log q)O(1).

Corollary 2.2. Given a prime power q and
a prime p such that p does not divide q, we
can construct an element in Fqp(p−1)/2 with order
exp(Ω(p)) in randomized time (p log q)O(1) and
deterministic time (pq)O(1).

Proof. Since p|qp−1−1 = (q(p−1)/2−1)(q(p−1)/2+
1). Either p|q(p−1)/2 − 1 or p|q(p−1)/2 + 1.

3 Weak keys for the discrete logarithm
problem

In this section, we show that the discrete loga-
rithm problem using generators arising from our
larger order construction has a large number of
weaker keys. The following lemma was proved in
[12]:

Lemma 3.1. There exists an algorithm, that
given h(x) ∈ Fq[x] of degree d and f(x) ∈ Fq[x]
of degree less than d, finds two polynomials f1(x)
and f2(x) of degree less than or equal to b(d −
1)/2c such that

f(x)f1(x) ≡ f2(x) (mod h(x)),

and the algorithm runs in time O((d log q)O(1)).



Theorem 3.1. Assume that α is an element of
degree d over Fq and it satisfies

αq+1 − a1α− b1 = 0.

Let (n0, n1, · · · , nd−1) be a list of integers in

S =
{

(n0, n1, · · · , nd−1) ∈ Zd
∣∣nd−1 = 0,∑

ni−ni−1≥0

ni − ni−1 ≤ (d− 1)/2,

∑
ni−ni−1<0

ni−1 − ni ≤ (d− 1)/2
}
,

Then there is a polynomial time algo-
rithm that given f(x) ∈ Fq[x] such that
f(α) = αn0+n1q+n2q2+···+nd−1qd−1

computes
(n0, n1, · · · , nd−1).

The number of weak keys is at least 5.8d,
better than previous result 5.17d.

Let c ≥ 2 be a positive integer and let
xc + a1x

c−1 + · · · + ac ∈ Fq[x] be a primitive
polynomial. Let α be a non-zero root of the q-
polynomial

xqc

+ a1x
qc−1

+ a2x
qc−2

+ · · ·+ acx.

Define

J =
{
j|∃r(x) ∈ R(q, bc/2c)

such that αqj

= r(α)
}

Let d = qc − 1. Define

S =
{

(n0, n1, · · · , nd−1) ∈ Zd
≥0

∣∣∑
j

nj <
qc − 1
qbc/2c

nj = 0 if j 6∈ J
}
.

Theorem 3.2. There is a polynomial
time algorithm that given f(x) ∈ Fq[x]
of degree no more than qc − 1 such that
f(α) = αn0+n1q+n2q2+···+nd−1qd−1

computes
(n0, n1, · · · , nd−1).

The number of weak keys is at least(|R(q, bc/2c)|+ qc−1
qbc/2c

|R(q, bc/2c)|

)
= exp(Ω(

√
qc))

Proof. For 1 ≤ i ≤ |R(q, bc/2c)|, let ri(x) be an
enumeration of polynomials in R(q, bc/2c) and
let ji ∈ J be the corresponding integer such that
such that αqji = ri(α). We have the equality

f(x) =
m∏

i=1

ri(x)nji

over Fq[x]. List all the polynomials
r1(x), · · · , rm(x) in a table. This can be
done in polynomial time. Try the maximal
power of ri(x) which divides f(x). This recovers
all nj .

Similarly, we have

Theorem 3.3. Let e be a divisor of q− 1. Let β
be a root of the irreducible polynomial

x
qc−1

e + a1x
qc−1−1

e + a2x
qc−2−1

e + · · ·+ ac.

Let d = (qc − 1) (this is NOT the degree of β
now) and let (n0, n1, · · · , nd−1) be a vector in

S′ =
{

(n0, n1, · · · , nd−1) ∈ Zd
≥0

∣∣∑
j

nj ≡ 0 ( mod e),
∑

j

nj <
qc − 1
qbc/2c

nj = 0 if j 6∈ J
}
.

Then there is a polynomial time algorithm that
given f(x) ∈ Fq[x] such that

f(β) = β
n0+n1q+···+nd−1qd−1

e

computes (n0, n1, · · · , nd−1).

Proof. Note that the exponent
n0+n1q+···+nd−1qd−1

e is an integer since
∑

j nj is
divisible by e. W.l.o.g, assume that β = αe. By
the previous theorem, the exponent of α in

αn0+n1q+n2q2+···+nd−1qd−1
= β

n0+n1q+···+nd−1qd−1

e

can be found in polynomial time.

Note that the number of weak keys is simply
the number of elements in S′. The most interest-
ing case is when e = q − 1. We obtain

Corollary 3.1. Let β be a root of the irre-
ducible polynomial

x
qc−1
q−1 + a1x

qc−1−1
q−1 + a2x

qc−2−1
q−1 + · · ·+ ac.



Let d = (qc − 1) (this is NOT the degree of β
now) and let (n0, n1, · · · , nd−1) be a vector in

S′ =
{

(n0, n1, · · · , nd−1) ∈ Zd
≥0

∣∣∑
j

nj ≡ 0 ( mod q − 1),
∑

j

nj <
qc − 1
qbc/2c

nj = 0 if j 6∈ J
}
.

Then there is a polynomial time algorithm that
given f(x) ∈ Fq[x] such that

f(β) = β
n0+n1q+···+nd−1qd−1

q−1

computes (n0, n1, · · · , nd−1).

4 Open problems

Many important problems about constructing
high order element remain open:

1. Given a prime power q and a positive integer
t, construct an element in Fqt with order
exp(Ω(t)) in randomized time (qt)O(1).

2. Given a prime p, finds an element of order
exp(Ω((log p)c)) in Fp in time (log p)O(1), for
some positive constant c ≤ 1.
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