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Abstract

We develop a new algorithm for factoring polynomials over finite fields by
exploring an interesting connection between the algebraic factoring prob-
lem and the combinatorial problem of stable coloring of tournaments.
Assuming GRH, we present an algorithm which can be viewed as a re-
cursive refinement scheme through which most cases of polynomials are
completely factored in deterministic polynomial time within the first level
of refinement; most of the remaining cases are factored completely within
the second level refinement, and so on. All cases are completely factored
after no more than logn /1.5 levels of refinement. In the worst case, the
algorithm will perform polynomial amount of ring operations on rings of
dimensions less than n" e over F, in order to factor a polynomial of

degree n over F), while the best previously known algorithm requires ring
. . . . log n+0(1)
operations on a ring of dimension n~ 2 . We also show that under a

purely combinatorial conjecture concerning tournaments, our algorithm
has polynomial time complexity.

1. Introduction

Factoring polynomials over finite fields is an important primitive operation in
computational number theory. It has extensive applications in mathematics, en-
gineering and information science. Although there are efficient randomized algo-
rithms to solve this problem, it remains open whether there exists a deterministic
polynomial time algorithm for it, even assuming standard number theoretical
conjectures. The deterministic complexity of this fundamental problem is the
main focus of this paper.

*Part of this paper, in its preliminary form, appeared in the proceeding of Algorithmic
Number Theory Symposium (ANTS) IV
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Let g be a prime power p” and f € F,[z] be of degree n given in the dense rep-
resentation which requires O(nlog¢) bits. It is well-known that factoring f over
F, can be reduced in deterministic polynomial time to factoring a completely
splitting polynomial f’ € Fplz] in polynomial time [4]. We remark in passing
that when p is small, the reduction yields an efficient deterministic algorithm to
factor f. In light of the above-mentioned reduction we will assume without loss
of generality that the input polynomial f is completely splitting and separable
over F in the sense that all roots of f are distinct and in F,.

The approach which underlies the existing efficient randomized algorithms for
solving the problem can be regarded as factoring by external asymmetry. Indeed
suppose the roots of the input polynomial f are oy, 9, -, 0, € F,. Given
h € F,, the polynomial

9= —(a—h)(&—(az=h) (2 = (an — h)) € Fpla]

can be computed efficiently from f without knowing oy, e, - - -, a;,. Suppose in
the set {aq — h,---,a, — h}, some of elements are quadratic residue and the
others are not. Then computing

GCD(g,z"T — 1)

will produce a nontrivial factor of g, and consequently a nontrivial factor of
f. This is the main idea behind the random polynomial time algorithm [6, 12]
which relies on an asymmetry among the roots of the polynomial in relation to
an external element h. This algorithm is very effective in practice. However all
attempts to derandomize it have failed.

Various researchers then started to explore the internal structure of roots for
factoring. Ronyai [14] first observed that the combinatorial property of roots can
play a role in factoring. Assuming the Generalized Riemann Hypothesis (GRH),
he gave an algorithm which factors polynomials in time O((n logp)*"), where c is
an absolute constant and r is an arbitrary factor of n which is greater than 1. In
particular we can factor polynomials with bounded degrees in polynomial time,
and we can efficiently split even degree polynomials. By generalizing his idea
to higher extension algebra, Evdokimov [8] proposed a deterministic algorithm
with time complexity (n'°8™logp)°®), assuming GRH. His algorithm requires a
polynomial amount of ring operations in rings of dimension nOW+25* in the
worst case. Gao [10] pointed out that when it is hard to factor a polynomial
using Evdokimov’s algorithm, the roots of the polynomial possess an impressive
symmetric property which he called square balanced.

In this paper we continue to investigate the approach of factoring polynomials
by the internal structure of the roots. We develop new algorithms for factoring
polynomials over finite fields by exploring an interesting connection between the
algebraic factoring problem and the combinatorial problem of stable coloring of
tournaments. In this approach we associate a polynomial to be factored with a
tournament on its roots. We design algebraic procedures that explore symmetry
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in the associated tournament and cause the polynomial to split as asymmetry in
the tournament is detected. Further splitting, if necessary, is effected as deeper
levels of symmetry are explored through algebraic means. The resulting algo-
rithm can be viewed as a recursive refinement scheme through which most cases
of polynomials, regardless of their degrees, are split completely at the first level
within polynomial time, most of the remaining cases are split completely before
the end of the second level refinement, and so on.

The first level of our refinement scheme is a procedure which uses Ronyai’s
method [14] as the building block. The basic observation is that Ronyai’s method,
when applied to a polynomial, groups the roots of the polynomial into factors
according to scores in the associated tournament. By refining the method we
obtain a procedure which implicitly performs stable coloring on the tournament.
As combinatorial theory shows that most graphs decompose into singletons un-
der a stable coloring, we can similarly show that most polynomials decompose
into linear factors under this procedure. Should a non-linear factor survive the
first level of refinement, it will be passed to higher levels of refinement where
algebraic procedures are employed to explore higher levels of stable coloring on
the tournament.

The resulting deterministic algorithm has (n'°¢™ log p)°) worst case complex-
ity. Moreover, all but at most 2"/® fraction of cases exit at the first level of
the refinement scheme being completely factored. Then most of the remaining
cases are split at the next level of refinement, and so on. The amount of time in
going through the i-th level of refinement is bounded by (nflogp)°™. All cases
are completely factored after no more than logn/1.5 levels of refinement. This
is an improvement over Evdokimov’s algorithm where logn levels of ring exten-
sions are necessary in the worst case. It is worth noting that our improvement
depends on a combinatorial result concerning the nonexistence of the so-called
triply-regular tournaments.

Our result assumes GRH. In bounding the fraction of cases that may need
to go on to higher level of refinement we need the additional assumption that
n < logp/2.

Under a purely combinatorial conjecture concerning tournaments, we can show
that the maximum number of levels of refinement in our algorithm is bounded by
a constant, which implies that our algorithm has worst case polynomial complex-
ity. There are strong evidences for the conjecture which we discuss in Section 7.

We remark that the method in this paper can be used to prove that poly-
nomials of degree n over F,, can be factored completely in time (n‘s(p) log p)O(l),
where §(p) is the size of largest transitive subgraph in the multicolor cyclotomic
tournament over F, (see definition in section 2). An interesting open problem is
to derive a sharp upper bound for é(p).
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2. Tournaments and finite fields

A tournament is a complete simple digraph. Let u and v be two vertices of the
tournament. We say that v dominates w if there is an arc from v to u. The score
of a vertex v in a tournament is the number of vertices dominated by v. Denote
by O(v) all the nodes in the tournament dominated by v and by I(v) all the
nodes dominating v. A tournament is reqular if every vertex has the same score.
It is easy to see that if n is the number of vertices in a regular tournament, then
n must be an odd number and the score of any vertex is ”T’l

Let p be prime. We construct tournaments on F), as follows. First assume that
p =3 (mod 4). For a,b € F,, there is an arc from a to b (a dominates b) iff
a—b is a quadratic non-residue. This tournament is well studied in graph theory
and is called quadratic residue tournament or paley tournament [13]. It is proved
[5] that the paley tournaments are the most symmetric tournaments, because
they are the only tournaments which are arc symmetric.

In case of p=1 (mod 4), we will need a more general notion of tournament
- multicolor tournament. A multicolor tournament 7" = (V, E) is a complete di-
graph where each arc is associated with a unique color that satisfies the following
conditions.

1. For any two vertices 4, j € V, The color of (i, 5) is different from the color
of (4, ).

2. For any four vertices i, j,s,t € V, (i,7) has the same color as (s,t) iff (4,1)
has the same color as (t, s).

From the definition, we see that the set of colors in a multicolor tournament
is partitioned into pairs. In particular, the number of colors must be even. We
can think that tournaments in the ordinary sense are two-color tournaments:
one color is “dominating” and the other is “being dominated”.

Suppose p — 1 = mr, where m is even and relatively prime to r. We can
construct a multicolor tournament over F, with the set of the m-th roots of
unity as colors by labeling an arc (7, j) with the color (i — j)". Note that an m-th
root of unity ¢ and its additive inverse —( form a complementary pair of colors.
If (4,7) has color «, we say that i a-dominates j. We can define the score of a
vertex with respect to a color in a straight-forward way. The resulting multicolor
tournament is called the m-th cyclotomic tournament over F.

In this paper, for odd primes p, we use “the cyclotomic tournament over F,”
to refer the unique 2*-th cyclotomic tournament where p — 1 = 2%r with r odd,
unless otherwise specified. Note that the quadratic residue tournament for F,
with p =3 (mod 4) is essentially the (second) cyclotomic tournament over F,,.
We remark that although the number of colors can be very large, there are at
most O(n?) arc colors in any induced subtournament of n vertices, and the colors
come in pairs.



Cheng and Huang: Factoring polynomials 5

3. The first level of refinement
Let f € F,[z] be a polynomial with all roots distinct and in F,, with

f=—a)(z—a)- - (z—ay).

We associate with f the subtournament induced by a4, ..., a, in the cyclotomic
tournament and denote it by T(f). Figuare 1 shows the subtournament asso-
ciated with 7 + 318z% + 34025 + 2352z + 215123 + 177422 + 3116z + 3648 =
(x—2178)(x—1811)(x —846)(x —1032) (z — 1111) (x — 3749) (x — 3784) mod 4943,

for m = 2.

Figure 1: The subtournament associated with 27+ 31825+ 34025 + 23522+ 215123+ 17742 +
3116243648 = (z—2178)(z— 1811)(z—846) (z— 1032) (z— 1111) (2 — 3749) (z — 3784) mod 4943.

Define the score polynomial of f with respect to a color «, denoted by S,(f),

as
n

[T e (1)

i=1
where b; is the score of a; with respect to a color .

For example, the score polynomial with respect to color —1 of 27 + 318z% +
3402° + 2352z* + 215122 + 177422 + 31162 + 3648 mod 4943 is

T2 + 1192220 + 43612 + 245828 + 308027 + 4871x'% + 377125 +
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15082 + 200423 + 4279212 + 46362 + 317320 4 13472° + 479128 +
13527 + 17222° + 38652° + 880z* + 226823 + 309322 + 1044z + 517,

which is congruent to (z —2178)*(x — 1811)*(x — 846)%(z — 1032)*(z — 1111)(z —
3749)%(z — 3784)* mod 4943.

An interesting observation is that the score polynomial S(f) can be computed
in polynomial time using Ronyai’s method.

THEOREM 3.1: Assuming GRH, then there is an algorithm that given a prime
p and a polynomial f in Fylz] of degree n, (1) finds all the arc colors in T(f);
(2) for any arc color o in T(f), computes the score polynomial S, (f) in time
(nlogp)®®.

This is a special case of Theorem 4.1, which we will introduce and prove later.
From f and S,(f) we can split f into factors each having roots of the same
score with the following procedure.

ALGORITHM 1: Input f with distinct roots in F,.

Compute the arc colors of T(f);
For every arc color pair («o,a@) in T(f) do
Calculate S,(f);
Let leSa(f)’ Jo=11;
while f; #1 do
While f2|f1 do f1 :fl/fg endwhile;
put fa/gcd(fi, fo) into output set;
let fo = ged(fi, f2)s

endwhile;
endfor;

Figure 2 shows that Algorithm 1 classifies the roots by score and split the
polynomial 7 + 3182% + 3402° + 23522* + 215123 + 177422 + 31162 + 3648 into
(z—1111) (2 —846) (z?+ 1622+ 3542) (x> + 21132 + 32412+ 2087), where z— 1111,
x — 846, 2% + 162z + 3542 and 23 + 211322 + 3241z + 2087 correspond to the
vertex sets with score 1, 2, 3 and 4 respectively.

We call a tournament regular if every vertex dominates the same number
of vertices. We call a polynomial regular if it induces a regular tournament.
For an irregular polynomial (tournament), after we apply the algorithm, we get
several factors corresponding to the scores. However, we need not stop here.
Suppose a factor is not regular (i.e. the roots of the factor do not induce a
regular subtournament). Then it will be split when the algorithm is applied to
it. Applying the algorithm to the product of two factors may also cause further
splitting. These ideas lead to the following refinement procedure on a set of
factors with disjoint sets of roots.

ALGORITHM 2: Input a set of relatively prime polynomials {fi, fo, -+, ful},
each with distinct roots in F,.
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Figure 2: Applying Algorithm 1 on the polynomial z7 + 3182% + 3402° + 2352z* + 215123 +
177422 + 3116z + 3648 mod 4943.

1. For 1 <7< n, apply the algorithm (1) on f;, let the set of output
polynomials be S;;

2. For 1 <¢<j<mn, apply algorithm (1) on f;f;, for every output
factor g, put gcd(g, f;) into S;, gcd(g, f;) into S;;

3. For every S;, if there are any two polynomial g,h € S;, such that
gcd(g,h) # 1, then remove g,h from S; and add ged(g,h), g/gcd(g,h),
h/gcd(g,h) into S;.

We apply Algorithm (1) to f and then apply Algorithm (2) to the set of factors
output by Algorithm (1). As we observe what is happening to the underlying
tournament, we find that the process is very similar to elementary refinement
for tournaments [3]. The first procedure partitions the roots by score. Suppose
Cy,Cy, - -, Cy, form the partition. For all roots z, let N;(x) denote the number
of neighbors of z in C;. In applying Algorithm (2) to the corresponding set of
factors, we first apply Algorithm (1) on C;. This amounts to comparing N;(z) for
all z € C;. Then we apply Algorithm (1) on C;C;. This amounts to comparing
Ni(z) + Nj(z) for all z € C; U C;. When we exit Algorithm (2), we have refined
the partition in the following manner. Two roots z,y are now in the same class
iff they are in same class before the refinement, and

(Ni(2), Na(2), - - -, Na(2)) = (N1 (), Na (), - -5 Na(y))-
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After we repeat Algorithm (2) at most n times, we will reach a point where
the partition remains unchanged. At this point the partition of the roots is a
stable coloring in the following sense.

Definition: A partition of the vertex set of a tournament into subsets, C1, ..., Cy,,
is a level-one stable coloring if

1. C;, 1 <1 < m, induces a regular subtournament,

2. For1 <14,j <m,forall u,v € C;, u dominates the same number of vertices
in C; as v does.

Figure 3 shows how the algorithm acts on the polynomial 27 + 31825 + 34025 +
2352z* + 215123 + 177422 + 3116z + 3648, resulting a complete factorization of
the polynomial.

(C) The third round refinement

(B) The second round refinement

Figure 3: Applying Algorithm 2 on the polynomial 27 + 318x% + 3402° + 2352z* + 215123 +
177422 + 3116z + 3648.
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At this point we have completed the description of the first level of refinement
in our algorithm for factoring polynomials over F,,. It is interesting to observe
that after the level-one refinement, each factor is the union of some vertex orbits
under the automorphism group of the tournament.

THEOREM 3.2: The fraction of completely splitting separable polynomials over
F, with degree n < logp/2 that cannot be split completely by the first level of
refinement is less than 2~™/°.

Proof: The following proposition was proved in [7]:

PROPOSITION 3.1: Let T be a random tournament on n vertices selected from
the uniform distribution over the set of labeled n-tournaments. The probability
that T cannot be factored into singletons by the refinement is less than 2-™/5.

If a separable polynomial f has all roots on F,, its root set will induce a sub-
tournament in paley tournament. On the other hand, every induced subtourna-
ment in paley tournament corresponds to a completely splitting separable poly-
nomial over F,. It was proved in [9] that every labeled tournament (graph) of
order n occurs roughly as frequently as it should as induced subtournament (sub-
graph) in paley tournament (graph), namely, with probability (1 + o(1))/ 2(3),
when n < (logp)/2. Hence the theorem follows from Proposition 3.1. O

4. The main theorem

A factor which remains after the first level of refinement has an underlying
tournament which is regular. To refine it further we look for coherent stable
colorings on all the subtournaments obtained by removing one root (vertex)
from the regular tournament.

Definition: Let Cy,Cy,-- -, C, be a level-one stable coloring for a tournament 7',
1, Ch, ---, C! be a level-one stable coloring for a tournament 7", we say the

two coloring are coherent if (reordering the lists if necessary)
e n=mand |C;| = |C]|, for all 1 <i < n.

e For any arc color o and ¢ # j, if every vertex in C; has k a-arcs to C}, then
every vertex in C] has k a-arcs to Cj.

Definition: Suppose T is a regular tournament with vertices vy, ..., v,. Suppose
14, Gyt -+, Cpi is a level-one stable coloring of T'—wv;. We say that the collection

of these level-one stable colorings constitutes a level-two stable coloring for 7', if
they are coherent with one another.

Below we describe how a regular polynomial can be manipulated algebraically
so that either a level-two stable coloring on the underlying tournament is iden-
tified, or the polynomial is split.
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In general let f be a polynomial of degree n with distinct roots aq, ..., a, in
F, as before. Let R = Fy[z]/(f) = F,[A], where A = x mod f. Let f* € R[z] so
that

flz)=(z - A)f"
There exist uniquely determined primitive idempotents ¢; € R, 1 < 1 < n,
such that Y77 | e; = 1,eie; = €;0;5. In fact, ; = [[; (4 — a;)/ L, .i(ai — ay).
For every element ¢ € R, these exist unique elements ci,---, ¢, € F, such that
c= Z?:l cie;- We call ¢; the ith canonical projection of ¢ on Fj,. The canonical
projections of a polynomial in R[z] can be similarly defined. In particular,

= ifiei where f; = H(:U — a;).
i=1 i#i

We remark that since f; represents the subtournament obtained from the tour-
nament of f by removing the root a;, f* succinctly represents all these subtour-
naments simultaneously.

For example, it can be verified that

F(z) = 27 + 64062° + 23442° 4 75832* + 81182° + 490622 + 3187z + 829

is a regular polynomial. Hence it can not be splitted using Algorithm 1. We can
compute F*(z):

2%+ (A+6406)2° + (A% 4 6406 A + 2344)2* + (A% + 6406 A2 + 2344 A +
7583)z 4+ (A* + 6406 A% + 2344 A% + T583A + 8114)x%(A® + 6406 A* +
234443+ 7583 A%+ 8114A+4906)z + (A% + 6406 A° +2344A* + 7583 A3 +
8114A? + 4906 A + 3187)

An element of R has the form h(A) where h is a polynomial over F, of degree
less than n. It is a zero-divisor in R iff the GCD of h(z) and f is not 1. In other
word as we attempt to find an inverse of h(A) in R by computing the GCD of
h(z) and f(x), we either succeed or find a nontrivial factor of f.

More generally, a completely splitting semisimple algebra [8] of dimension m

over F, is of the form
R= P Fe

1<i<m

where ¢; € R, 1 < i < m, and Z:L e; = 1,e,e; = €;0;5. The elements e; are
called primitive idempotents. For any g(z) € R[z|, we have g(z) = > "", g:i(z)e;,
where g;(x) € Fp[z]. We say that g is a completely splitting polynomial over R if
for all 7 the roots of g; are all distinct and in F,. Define the score polynomial of
g(x) with respect to a color a by
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Thus S,(g) succinctly represents the set of score polynomials S,(g;) for i =
1,---,m.

In the following theorem we extend Ronyai’s algorithm to polynomials over
general completely splitting semisimple algebras over F,. In the theorem we
assume: (1) Given a € R, we can determine whether a is a zero divisor, and if
not, find its inverse in polynomial amount of ring operations. (2) If a®~1/! is
an idempotent of algebra R, at least [ distinct /-th roots of a can be found in
(11og p)°M ring operations. Note that we do not assume that these idempotents
are explicitly given.

THEOREM 4.1: Suppose R is a ring with the above properties. Let f € R[x] be
a completely splitting monic polynomial with degree n. There is a deterministic
algorithm which either finds a nontrivial zero-divisor in R (hence a nontrivial

factor of f), or

1. finds all the colors in T(f1), where fi is the first canonical projection of f,
and

2. for any color a in T(f), computes S,(f) in (nlogp)®Y ring operations.

Proof: Let f =>"" ,a;z* € R[z],a, = 1, be a monic polynomial, suppose
f = Z fi(l‘)eia
1<i<m

where for any 1 < i < n, f;(z) € Fplz] splits completely over F, into n distinct
linear factors.
Let A be the companion matrix of f,

1<i<m
where A;’s are n x n matrices over F,. Let agi), ag), S asf) be the eigenvalues
of A; and /L&Z), ,ug RN ,usf) be the corresponding characteristic vectors.

Consider the following linear transformation

G=IQRA-AQRI= D e(IR)A)—ei(AQ)I),

1<i<m
which acts on R". The vectors in L = G(R"™) must have the form
> D et Quilei= 3 QO eimie) Qo Quie).
Jik.gFk Jikig#k i

It is a free module, having a basis {>, ..., /L;i) ®,u§:)e,-\j #k,1 < j,k <n}.
The dimension of L is n(n — 1). o
Let H be the transformation of G on L. Let the characteristic polynomial
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of C = H" be ¢(x) = ), ci(x)e;. We consider the case when c(z) € F,[z]. If
c(z) ¢ Fplz], we will show later in the proof that a zero-divisor in R can be
found. All the roots of ¢(x) are the colors in f;

Let a be one of roots of ¢(z). Let T be the kernel of C' — al as a linear map
on L. The vector in 7" must have form

Z Z ci,j,ku?) ® uf)ei-

g Jakﬂ(a‘gl) _a‘gci))'r:az

Let U be the transformation A @) I on 7. The characteristic polynomial of U
is the score polynomial (with respect to «).

Now we describe the algorithm to compute the score polynomial. The com-
panion matrix of f is

[0 1 0 0 0\
0 1 0 0
0 0 0 0
A= .
0 0 o --- 0 1
K —Gp —a1 —Q2 -+ —Qp—2 —0p—1 )

We compute I @ A and A Q) I, using the Kronecker product of matrices. Then
we construct the linear space L = G(R"") by doing the Gauss elimination on
G=IQA—AQI. In the process, we either encounter a zero divisor on R, or
end up with a basis for this linear space. Notice that R is a commutative ring
with identity, hence it has the invariant dimension property. This implies that
the number of independent generators we get should be n(n — 1). Notice that
C = H" can be computed by the repeated squaring technique. Consider the list

c,c?ct, -, 0%

Certainly that C2* = I. (Note that p — 1 = 2Fr where r is odd.) If C?' is
defined over F,, and its eigenvalues are known, we can compute the square roots
of all its eigenvalues. Let those square roots be 6, - - -, 6. If c? ' is also defined
over F,, then we compute its eigenvalues by checking the rank of c¥ - 4I
for 1 <4 < b. If C*7" is not defined over F,, then there must exist a 6; such
that the non-zero coefficient of the lowest non-zero term of the characteristic
polynomial of C?"' — 6,I is an zero-divisor. Hence we will find all the roots of
c(z) if ¢(x) € Fp[z], or find a zero-divisor in R if ¢(z) & F,[z].

We then need to construct basis for 7', which is the kernel of C' — o, and
compute U, which is the matrix for the linear transformation A ) I on 7. These
tasks can be done using the standard linear algebra methods. In the last step,
we calculate the characteristic polynomial of U. We either get a zero divisor in
the process, or obtain the score polynomial. The whole process takes polynomial
amount of ring operations. The theorem follows. O
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5. The second level refinement

With the above theorem we are in a position to extend Algorithms (1) and
(2) in a natural way to completely splitting polynomials in R[z], where R is a
completely splitting algebra over F), satisfying the conditions in Theorem 4.1,
assuming GRH. The steps in the algorithms which involve polynomial division
or GCD need some modification due to the presence of zero divisors in R. To
divide a polynomial g by a polynomial h over R, we need to check whether the
leading coefficient of A is a zero divisor, and if not, to find its inverse in R.
Encountering a zero divisor causes an early exit in the computation.

Following [10], the GCD of two polynomials over R can be defined: Let f(x), g(z) €
R[z] with f(z) = >, fi(z)e;, g(x) = Y i, gi(x)e;, where fi(z), gi(z) € Fplz],1 <
i < n. Define GCD(f,g) = >_r_, GCD(f;, g;)e;. For f,g € R[z], GCD(f,g) can
be computed in polynomial amount of ring operations [10], or a zero-divisor will
be found.

The above discussion shows that we can extend the level-one refinement in
a natural way to the polynomial f* over a ring R satisfying the conditions in
Theorem 4.1. We call this the level-two refinement on f.

THEOREM 5.1: Assuming GRH, then there exists a deterministic polynomial
time algorithm which on input a regular polynomial f € Fylz] of degree n that
induces a two-color subtournament in the cyclotomic tournament over F,, either
finds a nontrivial factor of f, or succinctly finds a level-two stable coloring for
the tournament of f in the sense that it factors f* as

m n
fr= Hg,- where g; = ZC;}jej
i=1 j=1

where C}?, ..., Cri constitute a level-one stable coloring C; for the subtourna-
ment obtained by removing the j-th root from f and Cq, ..., C, form a level-two
stable coloring for the tournament of f. Furthermore, m > 2, (after reordering

n—1

if necessary) there is 1 <r <m, 3, ., deg(g:) = >, 1cicm deg(9i) = "5
Proof: R =TFy[z]/(f) is a completely splitting semisimple algebra, satisfying the
conditions in Theorem 4.1 [8]. Given a non-trivial zero divisor in R, we can find
a nontrivial factor of f efficiently. By Theorem 4.1, we can compute S(f*) in
polynomial time.

Let T be the regular tournament associated with f. For a subset S of V(T),
we denote polynomial [], s(z — s) simply by S. Thus

n

fra)=> (T - a)e;.

i=1

If the tournament with n vertices is regular, then for any vertex x, every vertex
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in O(z) has score (n—1)/2 in T'—z, while every vertex in I(z) has score (n—3)/2.
So we get polynomial

S(f*) = Z O(a;) ™ V2 (a;) "3 2¢,.
=1

Let’s examine what happens as we apply the level-two refinement on f*. Without
early exit, the polynomial f* is factored as ff; when we apply Algorithm (1),
where

fo= ZO(ai)ei and f; = ZI(ai)ei
i=1 i=1

As we apply Algorithm (2) on f§ and f;, we may encounter a zero-divisor in
F,[A] and exit the refinement early with f split as result. If we successfully run
through the refinement without an early exit, then a level-one stable coloring
has been found for each 7; simultaneously. Moreover, not encountering a zero
divisor means that these level-one stable coloring are coherent( notice that during
the computation if we obtain a polynomial g = ), g;(x)e;, such that two of
the component polynomials have different degrees, then the coefficient of the
highest order term of g is a zero divisor.), thus a level-two stable coloring has
been succinctly constructed in the factors of f* over R. O

Again we consider the tournaments with two colors. Define the score vector of
a tournament as the sorted list of all the scores in the tournament. If the score
vector is the same for the subtournaments induced on O(v) (respectively I(v))
for every vertex v, it is known as pseudo-vertez-symmetric [1]. As a special case,
a tournament is called doubly-regular if it is regular and for every vertex v, the
subtournaments induced on O(v) and I(v) are regular. See the figure 4 for an
example.

For a doubly regular polynomial f, f* may go through level-two refinement be-
ing factored only into f5 and f;. Intuitively speaking, pseudo-vertex-symmetric
tournaments are highly symmetrical and rare. From the proof of Theorem 5.1,
we can conclude

COROLLARY 5.1: If f has level-two stable coloring, it corresponds to a pseudo-
vertex-symmetric tournament. If f* has only two factors, f corresponds to doubly-
reqular tournament.

For tournament with more than two colors, we have the following theorem by
the similar argument in proof of Theorem 5.1

THEOREM 5.2: Assuming GRH, then there is a deterministic polynomial time
algorithm which on input a regqular polynomial f € Fylz] of degree n associated
with m colors (m is even), either finds a nontrivial factor of f, or finds a non-
trivial factor of f* which has degree at most n/m.
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Figure 4: Example of a doubly-regular tournament.

6. Higher level refinement

We call a polynomial g € R[z] regular if g(z) = >, gi(z)e; where g; € F,[z] is
regular for all 4. The proof of Theorem 5.1 and 5.2 can be extended in a natural
way to show that there is a deterministic polynomial time algorithm which on
input a regular f € R|[x] of degree n, where R is a ring satisfying the conditions
in Theorem 4.1, either finds a nontrivial zero divisor of R, or succinctly and
simultaneously finds a level-two stable coloring for each canonical projection of
f.
Suppose f(z) € F,[z] isregular with degree n. Let Ry = F,,, Ry = Ro[z]/(f(x)).
Applying Theorem 5.1 to f*, we either find a nontrivial factor of f or split f*
over R;. Suppose f* is split over R;. Let f; be the factor with least degree n;. If
ny = 1, we can factor f [8, Lemma 9]. Otherwise f; is a polynomial whose canon-
ical projections are regular tournaments with order ni. Let Ry = R;[z]|/(f1(x)).
Then R, is a completely splitting algebra over F), satisfying the conditions in
Theorem 4.1, assuming GRH. _

Let fi = Y, Tie; where T; =[], (2 — ag-z)). Note that fi = [,;<,, (z—

1<i<n ag-z)ei). Let B=x (mod fi(z)) and f; = (x — B)f{. The idempotents
over Ry are

e§2) = H (B - Z ag)ei)/ H ( Z a§i)ei - Z a,(:)e,-) (2)

kok#j 1<i<n kk#j 1<i<n 1<i<n
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= > (I B=-a/ ] @ - ae ()

1<i<n kk#j Kok

Let eg-i) = Hk7k¢j(3 - a,(:))/Hk,k#j(ag-i) - ag)). Then Ry’s canonical primitive
idempotents are {ey)ei|1 <i<n,1<j<ng}, and

=YD e

i=1 j=1

We apply Algorithm (1) and (2) on f over R,. Either an early exit leads to
the splitting of f; over R; or even the splitting f over F; or a level-two stable
coloring is simultaneously found on every canonical projection of f;. Inductively,
let f; be the polynomial resulting from the i-th level of refinement with degree
n; over a completely splitting algebra R;. Now we sketch the algorithm:

ALGORITHM 3: Input a regular f € F,[z| with degree n.

i=1; Ry =Fyz]/(f(z)); m=n—1;
fi=f* Si={fi};
upper — level — zero — divisor = empty;
upper — level — root = empty;
while 2 >=1 do
If upper — level — zero — divisor is not empty
find new factor of polynomials in S; and update S; endif;
If upper — level — root is not empty
find new factor of polynomials in S; and update S; endif;
Set upper — level — zero — divisor = empty;
Set upper — level — root = empty;
Apply generalized Algorithm (1) and (2) on §; until
we cannot find new factors;
If a zero-divisor is found then
put the zero-divisor into the upper — level — zero — divisor;

i=1i-1;
else
Let f; be the polynomial with the smallest degree in S;;
put the root into upper — level — root;
i=i-1;
else

Rit1 = Ri[z]/(fi); niga = ny — 1;
fix1 = f55 Si = {finn}s
1=14+1;
endif
endif
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endwhile
Split f use the zero-divisor in R; or the root of f*;

A two-color tournament is called triply-regular if it is regular and for every
vertex v, the subtournaments induced on O(v) and I(v) are doubly-regular.
It is a remarkable fact that there is no triply-regular tournament with n > 4
vertices[11].

THEOREM 6.1: For any polynomial f € Fplz] of degree n, the number of levels

, ) . 1
that our algorithm go through in order to factor f completely is at most 5.

Proof: We know that n;,1 < n;/2. If we can show that n; ;o < n;/8, then n; <1
if ¢ > e,

If the number of arc colors in one of the canonical projects is greater than 2,
then n;.; < n;/4. Hence n;o < n;/8.

Suppose that every canonical project of f; is a two-color tournament. If any
of canonical projections of f; are not doubly-regular, then n;,; < n;/4, and
niv2 < n;/8. Otherwise, if the projections of f; are doubly-regular, it is possible
that n;11 = m;/2, but then the projections of f;;; will not be doubly-regular,
since there is no nontrivial triply-regular tournament, hence n; o < n;y1/4, thus

we have n;,o < n;/8. 0

In our algorithm, the maximum dimension of rings is:

2
_ no(1)+ losgn

n X
X ---X1

o3

XQX"'X]_:
8

7. Discussion

In general suppose f(z) is a regular polynomial over F, and T = T(f) is a
tournament that admits a level-two stable coloring. Put two arcs uv and zy in
the same class iff in the stable coloring of T'— u and T — x, v and y are in
corresponding classes (that is v € C} and y € C7 for some j). For any arc class
G, we call graph Bg = (V,G) a base graph for T with respect to the level-two
stable coloring of T', where V is the set of vertices in 7. Suppose that the level-
two stable coloring is represented by the factoring of f* into the product of g;
as in Theorem 5.1. Then the base graphs are in one-one correspondence with
the factors g;. Each base graph is a regular digraph and the set of arcs in a base
graph is the union of some arc orbits in the tournament under the automorphism
group of the tournament.

The bound on the number of levels in the above theorem seems to be far from
being tight. Define a function S from set of tournaments to the set of natural
numbers as follows. If a tournament 7' is not regular or doesn’t have second
level stable coloring, 8(T) = 0. If T has second level stable coloring, 5(T) is
the maximum of 3(C,T) among all the level-two stable colorings C of T', where
B(C,T) is the number of arcs in a minimum base graph with respect to C.
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CONJECTURE 7.1: Suppose T 1is a reqular tournament on n vertices that ad-
mits a level-two stable coloring. Then for any level-two stable coloring of T,

11, eee,Con, there is a Cf, such that B(C}) = O(n®), where c < 2 is a constant
independent of T.

Intuitively, the coherence requirement should already make it difficult for all
the C’; to have large minimum base graphs, if they could all have level-two stable
colorings at all. The conjecture implies that our deterministic algorithm factor
a polynomial of degree n over F, completely within polynomial time, since

d
n 2 24 ...
d X S n2(1+d+d +--) — nO(l)’

n d
nX—xXn"X—xn
2 2
where d = 3.
The fact that there is no triply-regular tournament with more than three
vertices and the following observation by Babai [2] provide strong evidences for

the conjecture.

PROPOSITION 7.1: Let T be a vertex-transitive tournament with n > 1 vertices.
Let vy be a vertex of T. Then for every vertex vy # vg there exists a vertex
Ve # Vg, v1 Such that the size of the orbit of the pair (vi,vs) in the stabilizer of
v s at most (n —1)/2.

Another way to improve our results is to look at the case when we have a lot
of arc colors.

Definition: We call a tournament with n vertices transitive if there is a linear
order of its vertices, vy, vy, ---,v,, such that for any ¢ and color «, if v; a-
dominates v;;1, then v; a-dominates v; for any j > i.

Denote 6(p) be the size of largest transitive subgraph in a cyclotomic tourna-
ment. Heuristically when the number of colors gets bigger, §(p) should become
smaller, even down to a constant. One can for example proves that a random
tournament with n vertices and n° (¢ < 1) colors has only constant size transi-
tive subtournament. It follows easily from our algorithm that the polynomial in
F, can be factored completely in time P(n’®) logp), where P is a polynomial
function.
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