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Abstract—Determining the minimum distance of a linear code
is one of the most important problems in algorithmic coding
theory. The exact version of the problem was shown to be NP-
complete in [15]. In [9], the gap version of the problem was
shown to be NP-hard for any constant factor under a randomized
reduction. It was shown in the same paper that the minimum
distance problem is not approximable in randomized polynomial
time to the factor 2'°¢' ™ unless NP C RTIM E(2P°'vies(m),
In this paper, we derandomize the reduction and thus prove
that there is no deterministic polynomial time algorithm to
approximate the minimum distance to any constant factor unless
P = NP. We also prove that the minimum distance is not
approximable in deterministic polynomial time to the factor
e’ """ ypless NP C DTIME(2P°'V°9(™) As the main
technical contribution, for any constant 2/3 < p < 1, we present
a deterministic algorithm that given a positive integer s, runs in
time poly(s) and constructs a code C of length poly(s) with an
explicit Hamming ball of radius pd(C), such that the projection at
the first s coordinates sends the codewords in the ball surjectively
onto a linear subspace of dimension s, where d(C) denotes the
minimum distance of C. The codes are obtained by concatenating
Reed-Solomon codes with Hadamard codes.

Index Terms—Coding theory, NP-complete, approximation
algorithm, minimum distance problem.

I. INTRODUCTION

In the theory of computational complexity, a (Karp) re-
duction from a language A to another language B is a
transformation f, such that x € A if and only if f(x) € B.
After the fundamental work of Cook [8], polynomial time re-
ductions are systematically used to identify complete problems
for classes of computational problems. As there is still no
separation between P and many supposedly larger classes such
as PSPACE, we rely on reductions to order the intractability
of computational problems.

Ideally, one would like reductions to be deterministic, but
sometimes deterministic reductions are hard to find, in which
case randomized reductions become useful. In general, a
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randomized reduction is a randomized algorithm which maps
strings in A to strings in B with high probability, and maps
strings not in A to strings not in B with high probability. The
probability in the randomized reductions is over the random
coins in the reduction and not over the inputs. For example, no
deterministic reduction from a NP-complete problem has been
found for the shortest vector problem of integer lattices in Lo
norm, but it was shown to be NP-hard by Ajtai [1] in 1998
under a randomized reduction. His work was later refined in
[5], [12] to show the hardness of approximating the shortest
vector problem, again under randomized reductions. In those
reductions, for any positive integer s, a gadget is constructed
which includes an integer lattice of dimension poly(s), a ball
of radius less than the length of shortest vectors but containing
many lattice points and a linear map which sends the lattice
points in the ball onto {0,1}*. Randomized algorithms have
to be deployed to find the center of the ball and the surjective
linear map. Derandomizing the reductions is a long standing
open problem in computational complexity. This can be done
conditionally [12] assuming certain smooth number conjecture
which is unfortunately hopeless to be proven at present.

The shortest vector problem of integer lattices corresponds
to the minimum distance problem of linear codes in coding
theory. A linear code C of length n and rank k over a
finite field F, is a k-dimensional linear subspace of Fy. It is
usually represented by a (generating) matrix in FZXk, whose
column vectors form a base of the code. For two vectors
x,y in Fy, the Hamming distance d(x,y) is defined to be
the number of positions where these two vectors differ. The
minimum distance of the code, denoted by d(C), is defined
to be the minimum Hamming distance between any two
distinct codewords. It equals the minimum weight of nonzero
codewords. The distance of a vector x € Fj to the code
C, denoted by d(x,C), is defined to be min_ e d(x,y). A
Hamming ball with center ¢ € F:; and radius r, denoted by
B(c,r), is defined to be the set of vectors within distance r
from c, namely,

B(e,r) = {x € Fy|d(x,c) <r}.

The minimum distance problem of linear codes was proven to
be NP-complete [15] in 1997 under a deterministic reduction.
Approximating the minimum distance of a linear code was
proved to be NP-hard [9] for any constant factor, under a
randomized reduction. More precisely the reduction in [9]
is a reverse unfaithful random reduction, which maps YES
instances of an NP-complete problem to YES instances in
the gap version of the minimum distance problem with high
probability and always maps NO instances to NO instances.



Definition 1.1: For a prime power ¢ and v > 1, an instance
of the Gap Minimum Distance Problem GapM DPF,  is a
linear code C over Fg, given by its generating matrix, and an
integer t such that

o itis a YES instance if d(C) < t;

e it is a NO instance if d(C) > ~t,

A related problem, the Relatively Near Codeword Problem,
was also proved to be NP-hard by a randomized reduction.

Definition 1.2: For a prime power ¢, real number p > 0
and v > 1, an instance of the Gap Relatively Near Codeword
Problem GapRN C’éf) W) is a linear code C of length n over F,
given by its generating matrix, a vector v € Fj/ and a positive
integer ¢ such that t < pd(C)

e it is a YES instance if d(v,C) < ¢;

e it is a NO instance if d(v,C) > ~t,

The reduction in [9] adopted some ideas in the work on the
shortest vector problem [1], [12], and used randomness in a
similar way in two steps:

« For certain codes, a randomized algorithm finds the center
of a Hamming ball which has a radius smaller than the
minimum distance by a constant factor less than 1 but
contains subexponentially many codewords.

« Randomness is needed to find a linear map which sends
the codewords in the Hamming ball onto a linear sub-
space of given dimension.

In both places, it was proved that random objects satisfy the
required properties with high probability. More precisely it
was proved in [9]

Proposition 1.3: (A rephrasing of Lemma 15 in [9]) Let ¢
be a prime power and 1/2 < p < 1 be a constant. There
exists a randomized algorithm that given an integer s, runs in
time poly(s) and constructs a linear code C over F, of length
n = poly(s), a vector w € F and a linear map 7 from F}/ to
F, such that with probability at least 1 — 1 /q~¢

7(B(w, pd(C)) N C) = F5.

Sometimes a random object possesses a certain property
but it is hard to construct an object with the property in a
deterministic manner. It is a recurring theme in combinatorics
and algorithm design, and poses a challenge for the derandom-
ization research. It is related to the P vs. RP problem, one of
the central questions on computational complexity.

Like the exact version of the shortest vector problem in
Ly norm, the gap version for lattices was proved to be NP-
hard to any constant factor under randomized reductions in
[11], [10]. It is interesting to contrast these problems with the
inhomogeneous versions, namely, the closest vector problems
in Lo norm for integer lattices and the maximum likelihood
decoding problems for linear codes. Both problems were
known to be NP-complete since the early eighties [14], [4],
and there are inapproximability results under deterministic
reductions [2]. Their homogeneous versions turn out to be
significantly harder to study.

A. Our results

The work in [9] left open a problem whether a deterministic
reduction can be found to prove the NP-completeness of the

gap version of the minimum distance problem. In this paper,
we answer the question affirmatively. We start by defining
Reed-Solomon codes.

Notation 1.4: Suppose f is a function defined over a field
F and let S be a subset of F'. We use (f),cs to denote the
vector (f(Cy), f(C2),- -, f(Cs)), where Cq,Cs,---,Cy is a
prefixed ordering of elements in S.

Definition 1.5: Let q be a prime power. The (extended)
Reed-Solomon code of dimension k, denoted by RS]g, k],
consists of all the vectors ( f(z:))Iqu where f € Fg[z] is
a polynomial of degree at most k — 1.

It is well-known that the minimum distance of RS|[q, k]
is ¢ — k + 1. Let p be a real number in (1/2,1). By an
averaging argument, one can show that for Reed-Solomon
codes of rate approaching one, there exist Hamming balls of
radius pd containing subexponentially codewords, where d is
the distance of the code. In [7], we show that for p € (2/3,1),
such Hamming balls can be found in a deterministic manner.
Continuing this line of research, in this paper, we present a
deterministic reduction from an NP-complete problem to the
Gap Minimum Distance Problem for any constant factor, and
to the Gap Relatively Near Codeword Problem with p > 2/3,
thus finalizing the NP-completeness proofs of both problems.
We achieve this by an in-depth study of codewords inside balls
constructed in [7], as the balls are explicit and more informa-
tion is available to us. As a result, we show that in fact, for a
certain code over F, that is a concatenation of a Reed-Solomon
code over F e with a Hadamard code, a suitable projection is
enough to send the codewords in the balls surjectively onto
a linear subspace. This essentially derandomizes Lemma 15
in [9] (Proposition 1.3) with p > 2/3. Our main technical
contribution is the following theorem.

Theorem 1.6: Let g be a prime power and 2/3 < p < 1 be
a constant. There exists a deterministic algorithm that given
an integer s, runs in time poly(s) and constructs a linear code
C over F, of length n = poly(s), and a vector w € F; such
that

m12,...s(B(w, pd(C)) NC) = Fy,

where 7;, ;,.....;;, denotes the projection at coordinates i1, 42,
P
Since a Hamming ball of radius r contains at most

2.

0<i<r

(3)fa =17 < -+ Data = 1) < poly(s))

many codewords, the above projection shows that the Ham-
ming ball B(w, pd(C)) contains at least ¢° many codewords,
thus has radius at least Q(s/log s). As pointed out in [9], we
can then deduce the following corollaries from Theorem 1.6.

Corollary 1.7: The minimum distance problem cannot be
approximated by a deterministic polynomial time algorithm to
any constant factor greater than one unless NP = P. It is not
approximable by a deterministic polynomial time algorithm to
the factor 2°¢' " unless NP C DTIM E(2p0lvlos(n)),

Corollary 1.8: For any p > 2/3, any prime power ¢ and
any v > 1, the Gap Relatively Near Codeword Problem
GapRNCY) is NP-complete.



B. Technique overview

Let g be a fixed prime power. Let h(z) be a monic polyno-
mial over Fge of degree h > 2. Given f(z) € Fge[z] and an
integer g > h with deg(f) < g and ged(f(x),h(z)) =1, we
denote by Th, 4(f) the set of monic polynomials t(z) € Fye|x]
of degree g — h, such that f(z) + ¢(x)h(z) can be factored
completely into g distinct linear factors in x + Fge. Finding
a good lower bound for the cardinality of T, 4(f) lies at the
heart of this work for the following reasons:

e The cardinality of the set is equal to the number of
codewords inside a Hamming ball of radius ¢¢ — ¢g and
centered at a vector easily obtained from f and h.

o Related problems such as counting primes or smooth
numbers in arithmetic progressions, and counting irre-
ducible polynomials which are congruent to f(x) modulo
h(z), have been well-studied. Classical mathematical
tools, e.g. the Weil character sum bound, have been
developed to tackle this type of problems.

For example, we proved in the paper [6] that if
g=(24¢h and ¢°= R/ €

then for every nonzero f(x) of degree less than h, [Ty 4(f)| >
q9/%. By a duality argument, we can obtain a similar bound
for Ty, ge—q(f). This allows us to construct deterministically
Hamming balls containing many codewords in Reed-Solomon
codes RS[q%, q° — g — h] of rate approaching 1, of which the
ratio between the radius and the distance, i.e. falls in
(2/3,1).

Remark 1.9: For p € (1/2,2/3], one can also show by
an averaging argument that there exist Hamming balls of
radius pd containing many codewords for some Reed-Solomon
codes of distance d. However, to deterministically find such a
Hamming ball requires substantially new ideas, as our proof
does not work if g/h < 2.

Based on the above results and a standard technique of
concatenating codes, we reduce Theorem 1.6 to show that
under certain conditions, T 4(f) is not only nonempty, but
also fairly big. More precisely we will prove that for any small
subset S of Fge of cardinality s, and any F-linear surjective
map 7 from Fge to Fy, if we evaluate polynomials in Ty, 4(f)
at elements in S to produce

{(t(2)zes|t € Thg(f)} € (Fge)®,

and then apply the linear map 7 on the set, we get the full
linear space F;. Note that the cardinality of 73, 4(f) must be
greater than ¢°. To prove the statement, we will use the Weil
bound in the residue class ring Fye[z]/(h(z) [[.cg(z — ¢)).
Though this ring is not a field, the powerful Weil bound can
be applied without much change. Together with an inclusion-
exclusion sieving argument, one can then show the desired
property of Ty 4(f) if ¢° is polynomial in s, and g = (2 +
€)h. This gives us favorable parameters for our present coding
theory applications.

g
g+h’

II. MATHEMATICAL PREPARATION

To simplify the notations, we shall replace ¢° with ¢ in
this section. Let h(z) € F,[x] have degree h > 1. For an

integer g > h, and f(z) € F,[x] of degree less than g, we use
Th,¢(f) to denote the set of monic polynomials ¢(z) € F,[z]
of degree g — h, such that f(z) + ¢(z)h(z) can be factored
completely as a product of g distinct factors in = + Fg. In our
earlier paper [6], we proved that under certain conditions on
¢, hand g, [Ty, 4(f)| > 0if h is irreducible and f is not a zero
polynomial. The main purpose of this section is to generalize
this result. We prove that under the same conditions on g, h
and g, |Th,q(f)| > 0 if f is invertible in Fy[x]/(h(x)). Note
that h(z) may be a reducible polynomial.

Theorem 2.1: Let h(x) € F4[z] be a non-zero polynomial
of degree > 1. Assume that

g >max(g?, h**%), g> 2+ €¢)(h+1)

for some constant € > 0. Then, every element [ in the
multiplicative residue group (F4[z]/h(x))* can be written as

B = H(l‘ —vj),

where v; € F, are distinct.

By expanding the linear product, the existence of such
v;’s can be reduced to the existence of an F,-rational point
of a rather complicated higher dimensional quasi-projective
variety defined over F,, involving many elementary symmetric
functions. If this variety is absolutely irreducible (which is
often not easy to prove), then one can apply an effective
Lang-WEeil estimate to obtain the existence of many F-rational
points if ¢ is sufficiently large. This approach would result in
poor parameters for coding theory applications as one needs to
assume that ¢ is very large (exponentially large compared to
other parameters). For coding theory applications, one needs
q to grow only polynomially with other parameters. We shall
keep the compact form of the above problem and reduce it
to the estimate of various partial character sums along a line
in the residue class ring F,[z]/h(x), which is not a field.
Via class field theory over function fields, one finds that
such partial sums along a line can be interpreted as complete
character sums on the affine line, and thus one can use Weil’s
bound for character sums to get a good estimate.

Proof: Let ¢(h) denote the number of the elements in
the group (F,[z]/h(z))*. It is clear that ¢(h) < ¢". Let G
be the complex character group of the multiplicative group
(Fylz]/h(x))*. If x € G, then x can be extended to a
multiplicative map on the full residue class ring F,[z]/h(z)
by defining x(«) = 0 for non-invertible elements « in
F,[z]/h(z). If x is non-trivial, then Weil’s character sum
bound on the affine line can be simply stated as:

[ x@=v)l<(h-1)va,
UEFq

see [16] for a fuller exposition of this estimate and its various
incarnations.
Let Ny(8) denote the number of ordered g-tuple
(v1,...,vg) € FJ with distinct coordinates such that 3 =
9_,(z —vj). The sum

j=1
> x(a)

x€G



is either ¢(h) or 0 depending on whether « is 1 or not. Thus,
we obtain the counting formula

Ng(ﬁ) =

Ly e
(;5( ) vjEF distinet XEG ﬂ
1<j<g

(l‘ — Ug)).

)
Applying the principle of inclusion-exclusion sieving and the
inequality ¢(h) < ¢", we deduce

VOEF D IEIDIB) DRE i)
uebe oz, Xe6
- 2 S ¥ vy,
AL R

The sum over the triVial character in the above formula gives
us the main term for N (53)

¢’ — (3"
VO
Using the Weil bound for non-trivial characters to obtain the
error term, we have

0 > B (Do

— ¢9/? ((q _ <g>)qg/2—1—h
—(1+

e+ (3)m-).

In order for N, (5) > 0, it suffices to have

q-— (g) >1+ (g), @/ > (b —1)9.

If ¢ > ¢2, then the first inequality holds. If ¢ > R2H% and

h < 3% —1, then
@27 1h s (Rt
= h>(h-1).
This concludes the proof of the theorem. [

III. THE GADGET

In this section, we apply the result of the previous section
with F,, replaced by F,e. We showed that the set T, 4(f) is not
empty under a certain condition on ¢¢, g and h if deg(f) < g
and ged(f(z), h(z)) = 1. In the section, we first show that the
set and its dual Ty, 4e_4(f) are fairly large in the sense that if
we evaluate the polynomials in the sets at a small subset S of
Fge of cardinality s, then we will get almost all the vectors in
(Fge)®. We reduce the problem to prove that [Ty 4(f")] > 0
for some suitable h'(z) and f/(z) dependent on h(z), f(z)
and S.

Theorem 3.1: Let q be a prime power and e > 2,h > 2
and s be positive integers. Let S = {C4,---,Cs} be a subset
of F,e of cardinality s and define

m(z) = H(a: — ).

i=1

Let h(x) € Fye[x] be a monic polynomial of degree h over
F,- that has no roots in Fye and is relatively prime to 7(z).
If

q° > maux((g—s){(h—&—s)z"‘%)7 g—s>2+4+¢e)(h+s+1),

for some positive integer g and some constant € > 0, then for
any f(x) € Fyelx] of degree less than h + s that is relatively
prime to h(z)m(z),

{v e Feld(v, (= f(z)/h(z))zes) = s}
- {(t<x))z65|t(x) € Th(w),qﬂfg(f)}'
Proof: For any vector v = (v, vs,- -+, vs) such that
d(v, (—=f(x)/h(z))zes) = s
we have f(C;) + v;h(C;) # 0, where C; is the i-th element

in the prefixed order of S. Write
t(x) = t1(z) + m(2)t2(2),

where ti(z) € Fge[z] is the unique polynomial of degree
smaller than s such that ¢;(C;) = v; for all 1 <4 < s, and
to € Fye[x] is a monic polynomial of degree ¢° —g — h — s,
to be determined. Thus, ¢(x) always satisfies the interpolation
t(C;) =wv; for 1 <14 <.

To prove the theorem, it suffices to show that the congruence

q°—g
f@)+t1(z)h(z) = H (x —u;) (mod m(x)h(x)), u; € Fge
i=1
has solutions with the w;’s being distinct. Now, the condi-
tion that ged(f(z),h(x)) = 1 and the conditions f(C;) +
v;h(C;) # 0 for all ¢ imply that

(f(x) + t1(x)h(z),7(z)h(x)) = 1.

This also implies that any solution automatically satisfies
u; € S. One could try to apply the character sum estimate in
Theorem 2.1 to the above congruence, but the number ¢° — g
of linear factors is too large and this would result in poor
(useless) parameters. To get around this difficulty, we shall
use the “dual” version of the above congruence, which will
have a much smaller number of linear factors.
Let

aEqu —-S

This is a polynomial in F[z] relatively prime to m(z)h(zx).
Dividing W (z) by the above desired congruence, we are
reduced to showing that the dual congruence

W(z) Zg_sx—v' mod 7w(z)h(z)), v;
T+t = L1 (mod w@hie). v, € B

has solutions with the v;’s being distinct. This dual congruence
now has only g — s linear factors. It does have solutions by
Theorem 2.1 under the condition

q° > maux((g—s)a(h—&-s)z"'%)7 g—s>(24¢€(h+s+1).

The theorem is proved. [ ]
We now present a deterministic algorithm that given a
positive integer s, constructs a linear code C over F,, and a



Hamming ball of radius pd(C), where 2/3 < p < 1, such that
the projection at the first s coordinates maps the codewords
inside the Hamming ball surjectively onto F;. The algorithm
runs in time poly(s).

Lemma 3.2: Let g be a prime power. Let 2/3 < p < 1 be a
constant. There exists a deterministic algorithm that, given an
integer s > 2, constructs a Reed-Solomon code C' over Fge
and a received word w’ € ng such that

o ¢ = O(log,s);

o Let A be an element in Fy- satisfying F [A] = Fe.
Such an A, or more precisely, its minimum polyno-
mial, can be found in deterministic time poly(ge) [13].
For any (ai,az,---,as) € Fy, there exist elements
(b1, b2, -+, bs) € Fy and (ur,ug, -+, uge—s) € ngfs
such that

(b1A+a17b2A+ az, - ~,bSA+a5,u1, o
€ C'nBWw,pd(C"));

: 7uqe—s)

« the minimum distance of C’ is greater than s2.

Proof: Set h = s? and g = Llpfpj. We have

I g—s _ P
im =
ssooh+s+1 1—p

> 2.

Thus when s is large enough, we can find a positive constant
€, e.g.

3p—2
S\ Y "y
1-p 2—2p

so that g — s > (2 + €)(h + s). Let e be the least positive
integer such that

=

¢° > max((g — 5)%, (h+ 8)2T%).

It is easy to verify that e = O(log, s). Let C1,Cq, -+, Cye
be a natural ordering of elements in Fge. Now consider the
Reed-Solomon code C' = RS[¢%, ¢° —g—h+1]. Find a monic
irreducible polynomial h(z) of degree h over Fe, which can
be done in deterministic time poly(geh) [13]. Let

w' = (=1/h(C1),=1/h(Cy),- -, =1/h(Cq)).

For any (ala az, =,
FZ such that

as) € F;, we can find (by,bz,---,bs) €

for all 1 < i < s. According to Theorem 3.1, taking f(z) = 1,
there exists a polynomial ¢(z) of degree ¢ — g — h, such that

o 1+t(x)h(x) can be completely split into distinct factors
inx+Fge;
e t(C;) = bjA + a; for some b;, 1 <i<s;
This means that

(t(C1), -+, t(Cye))

is a codeword, and it shares at least ¢ — g many coordinates
with w’. Therefore it is a codeword in the Hamming ball
B(w', g). The ratio between the radius of the Hamming ball
B(w', g) and the minimum distance of the Reed-Solomon code
is

g 9

—— = —— < p.
dC) —g+h ="

]

The code we construct above is a Reed-Solomon code, and

thus its field size cannot be fixed. Next we use the idea of

concatenation with a Hadamard code to obtain a code in a

fixed field. An element in Fye can be represented uniquely as

ag+ a1 A+ -+a._1 A with a; € F,forall0 <i<e—1.
Define the map

¢:Fpe = FY

by sending ag+ a1 A+ -+ a._1.A°" to a vector in Fge that
consists of evaluations of the multilinear polynomial

2
at all the points in FZ Without loss of generality, we assume

that the first position of ¢(ag+ a1 A+ ---+ac_1 A°71) is the
evaluation of (2) at (1,0,---,0), so

m(p(ag + a1 A+ -+ ae,lAE_l)) = qyp.

It is easy to see that d(¢(u),p(v)) = ¢¢ (g — 1) if u # v,
because two distinct hyperplanes of dimension e intersect at a
hyperplane of dimension e — 1. We extend ¢ to vectors over
Fg. by letting ¢ act on each coordinate, namely,

¢('U17 V2, vn) = (¢(U1)7 (b(UQ)v T (b(Un)),

where v; € Fge for 1 <14 < n.
Proof: (of Theorem 1.6): Let C’ be the code constructed
in Lemma 3.2. We define a code

¢’ = {(¢(U1)7 ¢(U2)a M) ¢(Uq“))|<vl7v2a s 7’Uqﬂ) € Cl}

It is easy to verify that C’ is a linear code of length (¢¢)? and
minimum distance ¢°~!(q — 1)d(C’). Let w” = ¢(w’). For
any (a1, az,---,as) € Fy, there exists (b1, b, -+, bs) € F
such that a codeword ¢’ in B(w’, pd(C')) has a; + Ab; as the
i-th coordinates for 1 < i < s. Then ¢” = ¢(c’) is a codeword
in the ball B(w”, pd(C")), and

apTo + a1T1 + -+ QGe—1Te—1

7T1,1+q3,1+2q5---,1+(371)q“(C//) = (a1,az,- -, as)~

Therefore, rearranging the coordinates of C” and w” will
produce a code C and w satisfying the requirements. [ ]

IV. THE REDUCTION

In this section we reduce the gap maximum likelihood
decoding problem with a large factor to the gap minimum
distance problem with the factor close to 3/2. Though the idea
is adopted from [9], we include a proof here for completeness.
To boost the gap from 3/2 to any constant, one applies the
standard technique of using tensor product codes. For details
see [9].

Definition 4.1: For a prime power ¢ and a real constant
v > 1, an instance of the gap maximum likelihood decoding
problem GapM LPF, . is a linear code C, given by its gener-
ating matrix, a received word v and an integer ¢, such that

o itis a YES instance if d(v,C) < t;

o it is a NO instance if d(v,C) > ~t.

The following theorem was proved in [2].

Theorem 4.2: For any prime power ¢ and constant v > 1,
there is a polynomial time deterministic reduction from 3SAT
to GapM LP, .



Theorem 4.3: Let q be a prime power. There exists a de-
terministic polynomial time reduction from the gap maximum
likelihood decoding problem over F, with factor « to the gap
version of the minimum distance problem of linear codes with
factor v/ = 3/2+ O(1/7).

Proof: Given an instance of the gap maximum likelihood
decoding problem (C,v,t), let A € Féxs be the generator
matrix for C. Set s’ = max(s,~t), and let B be the parity
check matrix for the code C; constructed in Theorem 1.6 with
input s’, and let w be the center of the Hamming ball with
many codewords. Denote the length of C; by n and d(C;)
by d. Note that d > (s')2 > (vt)? and the matrix B has
size poly(s’). Let C2 be the code with the following generator
matrix M:
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where the number of A’s is (%] and the number of B’s is d.

Now consider a nonzero codeword ¢ generated by the column

vectors of M with z1,---, z,,y as the coefficients.
[d/(vt)] d
c = (A(z1,22,-,26) -, Blz1, 20,y zn) T, -+,

[d/(vt)]
7Zn)+y( Vo 307"'

If the gap maximum likelihood decoding problem is YES
instance, then there exists a vector (21, -, z;) € F; such that

d(A(z1, -+ zS)T,v) <t.

21y %2, ,W)

According to Theorem 1.6, we can find (2511, -+, 2,) € Fy™°
so that (21, -, 2z,) is a codeword of Cy in the Hamming ball
centered at w and of radius 2d/3. Let y = —1. We can verify
that the weight of c is at most

2d/3+t[d/(vt)] = (2/34+ O(1/v))d.

Now assume that the gap maximum likelihood decoding
problem is a NO instance. We want to show that c has a
weight at least d. If y = 0, then zq,---,z, cannot be all
zeros. If (z1,-+,2,) & C1, then

B(Zlsza o 'aZn)T 7é 07

so the weight of c is at least d, as there are d many B’s. If
(21, -+, 2n) € Cq, then its weight is at least d, so is the weight
of c.

If y # 0, w.l.o.g, assume that y = —1. Then the weight of
c would be at least *yt[%} >d.

In summary, the ratio of the minimum distance of C5 at NO
instance of GapM LP, ., over the minimum distance at YES
instance is at least

d
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V. CONCLUDING REMARKS AND OPEN PROBLEMS

The gap minimum distance problem was proved to be NP-
hard in [9] under a randomized reduction. It left open the
question whether the reduction can be derandomized. In this
paper, we settle the problem affirmatively and thus finalize the
proof of the NP completeness of the gap minimum distance
problem to any constant factor. Recently Austrin and Khot
have found a new solution to this problem [3].

Although the idea in Ajtai and Micciancio’s work on the
shortest vector problem in Lo norm inspired the results on the
gap minimum distance problem, the reduction for the latter
problem is now derandomized. In contrast, finding a determin-
istic reduction for the NP-completeness of the corresponding
lattice problem, even for the exact version, remains open. We
hope that some of the ideas in this paper can contribute to
the ultimate solution of the corresponding lattice problem.
Another interesting open problem is to prove Theorem 1.6
for 1/2 < p <2/3.
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