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Abstract
In this paper, we present an algorithm that given a fixed prime power q and a positive

integer N , finds an integer n ∈ [N, 2qN ] and an element α ∈ Fqn of order greater than
5.8n/ logq n, in time polynomial in N . We present another algorithm that find an integer
n ∈ [N,N + O(N0.77)] and an element α ∈ Fqn of order at least 5.8

√
n, in time polynomial in

N . Our result is inspired by the recent AKS primality testing algorithm [1] and the subsequent
improvements [4, 5, 3].

1 Introduction

It is well known that every finite field has multiplicative generators, which sometimes are called
primitive elements. An important open problem in computational number theory is to construct
a multiplicative generator for a given finite field. Although there are plenty of generators in a
finite field [7, Chapter 1, Theorem 5.1], finding one is notoriously difficult, since we do not know
how to test whether an element is a generator or not without factoring integers or finding discrete
logarithms. Assuming GRH does not seem to help.

In practice, small characteristic fields are particularly useful. In this context, one can ask a
relevant but less restrictive question: for a fixed prime power q, can we find an element in Fqn

with large order in time polynomial in n? Note in the question that we are not required to give the
exact order of the element. Instead, we only need to give a proof that the element has high order.
Besides the apparent connection to the generator problem, the problem is interesting in its own
regard [12]. However, it does not seem easier than finding a primitive element if we require the
order to be greater than qnc

for a constant c. A weak solution was given in [6], which presented
a polynomial time algorithm producing an element with order at least nlogq n. Another relevant
question asks to find a number n greater than a given number N , and an element of order at least
qnc

in Fqn for some constant c. The rationale of this question, which we call the special finite
field high order element problem, is to deal with special finite fields first, and then try to increase
the density of the sequence of n so that the high order element problem can be eventually solved.
von zur Gathen and Igor Shparlinski [12, 11] have obtained the following results:

Proposition 1.1. Let q be a fixed prime power. For any positive integer N , an integer n ≥ N
with n = O(N log N) and an element α ∈ Fqn of order at least 2(2n)1/2−2 can be computed in time
polynomial in N .

Proposition 1.2. Let q be a fixed prime power. For any positive integer N , an integer n ≥ N
with n = N + O(N/ logc N) and an element α ∈ Fqn of order at least 210q−12n1/2−25 can be
computed in time polynomial in N .

∗Part of the paper, in its preliminary form, appeared in the Proceedings of the ACM-SIAM Symposium on Discrete
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All the above results are based on the properties of Gauss Periods. For a survey, see [12].

2 Our Results

A novel technique in the celebrated AKS primality testing algorithm and its subsequent
improvements is to use polynomials of degree one to generate a large multiplicative subgroup
modulo an integer and a polynomial. In this paper, we apply this idea to obtain a new solution
to the special finite field high order element problem. Our result, which can be summarized in
the following theorems, features a denser sequence of n and/or a much higher order.

Theorem 2.1. Let q be a fixed prime power. For a sufficiently large positive integer N we can
compute in time polynomial in N an integer n ∈ [N, 2qN ] and an element α ∈ Fqn with order
greater than 5.8n/ logq n.

Theorem 2.2. Let q be a fixed prime power. We can compute in time polynomial in N an integer
n ∈ [N,N + O(N0.77)] and an element α ∈ Fqn with order greater than 5.8

√
n.

They are based on the following result.

Lemma 2.1. Let r be a prime power. Let m be a positive divisor of r− 1. Let xm − g, g ∈ Fr, be
an irreducible polynomial over Fr and α be one of its roots in the extension field Frm. Then for
any a ∈ F∗

r, α + a has order greater than

max
0≤d−≤d≤m

(
m

d−

)(
d− 1
d− − 1

)(
2m− d− − d− 2

m− d− − 1

)
.

The finite field Frm is a Kummer extension of Fr. By a numerical search [3], it can be shown
that asymptotically, max0≤d−≤d≤m

(
m
d−

)(
d−1

d−−1

)(2m−d−−d−2
m−d−−1

)
is Ω(5.8m) when we take d− = 0.292m

and d = m/2.

Proof. W.l.o.g., suppose that Frm = Fr[x]/(xm − g), and α = x (mod xm − g). Denote the order
of α + a by s. Then α + a is one of the roots of Xs = 1. We want to estimate the number of
roots of Xs = 1. For any c ∈ (F∗

r)
(r−1)/m, cα + a is one of the roots as well, since cα + a is a

conjugate of α+a over Fr. If A is a solution and B is a solution, then AB and A/B are solutions
as well. We use this fact to find more solutions. Let c1, c2, · · · , cm be a list of all the elements
in (F∗

r)
(r−1)/m. If (e1, e2, · · · , em) and (e′1, e

′
2, · · · , e′m) are two different sequences of integers,

suppose that
∑

1≤i≤r−1 |ei| = m − 1,
∑

1≤i≤r−1 |e′i| = m − 1, |{i : ei < 0}| = |{i : e′i < 0}| = d−

and
∑

ei<0 |ei| =
∑

e′i<0 |ei| = d, we claim that
∏

1≤i≤m(ciα + a)ei 6=
∏

1≤i≤m(ciα + a)e′i . Assume
that these two elements are equal, we have∏

1≤i≤m,ei≥0

(ciα + a)ei
∏

1≤i≤m,e′i<0

(ciα + a)−e′i =
∏

1≤i≤m,ei<0

(ciα + a)−ei
∏

1≤i≤m,e′i≥0

(ciα + a)e′i .

Since
∑

1≤i≤m,ei≥0 ei +
∑

1≤i≤m,e′i<0(−e′i) =
∑

1≤i≤m,ei<0(−ei) +
∑

1≤i≤m,e′i≥0 e′i = m − 1, we
obtain that∏

1≤i≤m,ei≥0

(cix + a)ei
∏

1≤i≤m,e′i<0

(cix + a)−e′i =
∏

1≤i≤m,ei<0

(cix + a)−ei
∏

1≤i≤m,e′i≥0

(cix + a)e′i

in the ring Fr[x], contradicting the unique factorization of the ring.



Now consider the subset of Frm :

S = {
∏

1≤i≤m

(ciα + a)ei |
∑

1≤i≤m

|ei| = m− 1, |{i : ei < 0}| = d−,
∑
ei<0

|ei| = d}.

All of the elements in S are roots of Xs = 1. Thus s ≥ |S|. The cardinality of S is(
m
d−

)(
d−1

d−−1

)(2m−d−−d−2
m−d−−1

)
. The exponential size of the group generated by linear factors in a

polynomial ring was known before. Using negative exponents to obtain a better bound was
suggested by Voloch [10] recently.

Does there exist an irreducible polynomial of form xm − g over Fr? The following lemma
answers the question.

Lemma 2.2. The polynomial xm − g is an irreducible polynomial over Fr if m|r− 1 and g is not
a l-th power in Fr for any l|m (l > 1), in particular, if g is a multiplicative generator of Fr.

Proof. Let α be a root of xm − g over some extension of Fr. Denote [Fr(α) : Fr] by d. We have
[Fr(aα) : Fr] = d for any a ∈ (F∗

r)
(r−1)/m, and aα is also a root of xm − g. This implies that

xm− g can be factored into irreducible polynomials of degree d over Fq, and d|m. Take the factor
f(x) satisfying f(α) = 0. Assume f(x) is monic, and the constant coefficient of f(x) is f0. The
roots of f(x) have form α, a1α, · · · , ad−1α. We have f0 = (

∏d−1
i=1 ai)αd. So αd = m

(
Qd−1

i=1 ai)
∈ F∗

r ,

and (αd)m/d = g. This contradicts the condition in the lemma.

3 The Algorithms and The Proofs

Now we are ready to describe the algorithms. Let q be a fixed prime power. The input of the
algorithm is a positive integer N > 0. The first algorithm is designed to prove the Theorem 2.1.

1. Find the smallest positive integer t such that t(qt − 1) ≥ N . Let n = t(qt − 1);

2. Find a generator in Fqt , denote it by g;

3. Solve the equation xqt−1 − g = 0 in Fqn , let α be one of the roots;

4. Output α + 1 ( or α + a for any a ∈ F∗
qt).

From Step 1, we see that N ≤ n ≤ 2qN . Step 2 and 3 altogether take time (qt)O(1) = NO(1).
Hence the algorithm takes time NO(1). Applying Theorem 2.1 with r = qt ≥ n/ logq n and
m = r−1, we get that the order of the output element is greater than 5.8qt

for a sufficiently large
n, which is greater than 5.8n/ logq n. This proves the Theorem 2.1.

The second algorithm is designed to prove Theorem 2.2

1. Find the smallest prime t greater than
√

N + 1.

2. Use the algorithm described in [9, Theorem 2.4] [8] to construct a small set G ⊆ Fqt such
that at least one of the elements in the subset is a primitive element.

3. For g ∈ G, testing the irreducibility of xt − g. Stop if xt − g is irreducible over Fqt−1 ;

4. Solve the equation xt − g = 0 in Fq(t−1)t , let α be one of the roots;

5. Output α + 1 ( or α + a for any a ∈ F∗
qt).



From Step 1, we see that
√

N + 1 ≤ t ≤
√

N + O(
√

N
0.525

) [2]. Hence N ≤ t(t − 1) =
N + O(N0.77). Testing irreducibility and factoring polynomials can be solved in polynomial time
if the characteristic of the field is small. And there is at least one primitive element in G. (
However, that xt − g is irreducible does not imply that g is a primitive element in Fqt−1 . ) Hence
step 3 and 4 altogether take time (t log q)O(1) = NO(1). The whole algorithm takes time NO(1).
Applying Theorem 2.1 with r = qt−1 and m = t, the order of the output element is greater than
5.8t for sufficiently large n, which is greater than 5.8

√
n.

4 Concluding Remarks

A few comments are in order

1. A similar idea can be applied to solve the problem of constructing extensions of Fqr (q is a
fixed prime power) with an element of provable high order.

2. Numerical evidences suggest that the order of g is often equal to the group order qn − 1,
and is close to the group order otherwise. However, it seems hard to prove it. In fact, this
is one of the main obstacles in improving the space efficiency of AKS-style primality testing
algorithm [1]. We make the following conjecture.

Conjecture 1. Let q be a prime power and n be a positive factor of q − 1. Assume that
n ≥ log q. Let xn − g (g ∈ Fq) be an irreducible polynomial over Fq and let α be one of its
roots. Then the order of α + 1 is greater than qn/c for an absolute constant c.

3. Let p be a prime. The Artin-Schreier extension of a finite field Fp is Fpp . It is easy to show
that xp − x − a = 0 is an irreducible polynomial in Fp for any a ∈ F∗

p. So we may take
Fpp = Fp[x]/(xp − x− a). Let α = x (mod xp − x− a). It can be shown similarly that the
order of α + b for any b ∈ Fp is asymptotically greater than 5.8p.
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