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On Determining Deep Holes of Generalized
Reed-Solomon Codes

Jincheng Zhuang, Qi Cheng and Jiyou Li

Abstract—For a linear code, deep holes are defined to be
vectors that are further away from codewords than all other
vectors. The problem of deciding whether a received word is a
deep hole for generalized Reed-Solomon codes is proved to be co-
NP-complete by Guruswami and Vardy. For the extended Reed-
Solomon codes RSq(Fq, k), a conjecture was made to classify
deep holes by Cheng and Murray. Since then efforts have been
made to prove the conjecture, or its various forms. In this paper,
we classify deep holes completely for generalized Reed-Solomon
codes RSp(D, k), where p is a prime, |D| > k > p−1

2
. Our

techniques are built on the idea of deep hole trees, and several
results concerning the Erdös-Heilbronn conjecture.

Index Terms—Reed-Solomon codes, deep hole, Erdös-
Heilbronn conjecture, MDS conjecture.

I. INTRODUCTION

RREED-SOLOMON codes are of special interest and im-
portance both in theory and practice of error-correcting.

Definition 1: Let Fq be a finite field with q elements and
characteristic p. Let D = {α1, . . . , αn} ⊆ Fq be the evaluation
set and vi ∈ F∗q , 1 6 i 6 n, be the column multipliers.
The set of codewords of the generalized Reed-Solomon code
RSq(D, k) of length n and dimension k over Fq is defined as

RSq(D, k) ={(v1f(α1), . . . , vnf(αn)) ∈ Fnq | f(x) ∈ Fq[x],

deg(f) 6 k − 1}.
We will write generalized Reed-Solomon codes as GRS

codes for short. If D = F∗q , it is called primitive. If D = Fq , it
is called singly-extended. A GRS code is called normalized if
its column multipliers are all equal to 1. In this paper, we will
work on normalized GRS codes without loss of generality.

The encoding algorithm of the GRS code can be described
by the linear map ϕ : Fkq → Fnq , in which a message
(a1, . . . , ak) is mapped to a codeword (f(α1), . . . , f(αn)),
where f(x) = akx

k−1 + ak−1x
k−2 + · · ·+ a1 ∈ Fq[x].
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The Hamming distance between two words (vectors) is the
number of their distinct coordinates. The error distance of a
received word u ∈ Fnq to the code is defined as its minimum
Hamming distance to codewords. The minimum distance of a
code, which is denoted by d, is the smallest distance between
any two distinct codewords of the code. The covering radius
of a code is the maximum distance from any vector in Fnq
to the nearest codeword. A deep hole is a vector achieving
the covering radius. A linear code [n, k]q is called maximum
distance separable (in short, MDS) if it attains the Singleton
bound, i.e., d = n−k+1. GRS code is a linear MDS code, and
its minimum distance is known to be n−k+1 and the covering
radius is n − k. Thus for the GRS code, u is a deep hole if
d(u,RSq(D, k)) = n − k. A linear code can be represented
by a generator matrix. In this paper, we assume that the rows
of a generator matrix form a basis for the code.

A. Related work

Efforts have been made to obtain an efficient decoding
algorithm for GRS codes. Given a received word u ∈ Fnq ,
if the error distance is smaller than n −

√
nk, then the list

decoding algorithm of Sudan [18] and Guruswami-Sudan [8]
solves the decoding in polynomial time. However, in general,
the maximum likelihood decoding of GRS codes is NP-hard
[9].

We would like to determine all the deep holes of the code.
To this end, given a received word u = (u1, u2, . . . , un) ∈ Fnq ,
we consider the following Lagrange interpolating polynomial

u(x) =
n∑
i=1

ui

n∏
j=1
j 6=i

x− αj
αi − αj

∈ Fq[x],

where D = {α1, . . . , αn} is the evaluation set. The Lagrange
interpolating polynomial is the unique polynomial in Fq[x] of
degree less than n that satisfies u(αi) = ui, 1 6 i 6 n. In
this paper, we say that a function u(x) generates a vector u ∈
Fnq if u = (u(α1), u(α2), . . . , u(αn)). We have the following
conclusions:

1) If deg(u) 6 k − 1, then u ∈ RSq(D, k) by definition
and d(u,RSq(D, k)) = 0.

2) If deg(u) = k, then it can be shown that u is
a deep hole by the following proposition [10], i.e.,
d(u,RSq(D, k)) = n− k.

Proposition 1: ([10]) For k 6 deg(u) 6 n− 1, we have the
inequality

n− deg(u) 6 d(u,RSq(D, k)) 6 n− k.
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When the degree of u(x) becomes larger than k, the
situation becomes complicated for GRS codes. However, in
the case of singly-extended GRS codes, the situation seems to
be much simpler. Cheng and Murray [5] conjectured in 2007
that the vectors generated by polynomials of degree k are the
only possible deep holes.

Conjecture 1: ([5]) A word u is a deep hole of RSq(Fq, k)
if and only if deg(u) = k.

There is an analogous conjecture for deep holes of primitive
Reed-Solomon codes by Wu and Hong [22].

Conjecture 2: ([22]) A word u is a deep hole of RSq(F ∗q , k)
if and only if:

u(x) = axk + f6k−1(x), a 6= 0;

or
u(x) = bxq−2 + f6k−1(x), b 6= 0;

where f6k−1(x) denotes a polynomial with degree not larger
than k − 1.

Cheng and Murray [5] proved the following result by
reducing the deep hole problem to the existence of rational
points on a hypersurface over Fq .

Theorem 1: ([5]) Let u ∈ Fqq such that 1 6 ∆ := deg(u)−
k 6 q − 1 − k. If q > max(k7+ε,∆

13
3 +ε) for some constant

ε > 0, then u is not a deep hole.
Following a similar approach of Cheng-Wan [6], Li and

Wan [12] improved the above result with Weil’s character sum
estimate.

Theorem 2: ([12]) Let u ∈ Fqq such that 1 6 ∆ := deg(u)−
k 6 q − 1− k. If

q > max((k + 1)2,∆2+ε), k > (
2

ε
+ 1)∆ +

8

ε
+ 2

for some constant ε > 0, then u is not a deep hole.
Then Liao [14] proved the following result:
Theorem 3: ([14]) Let r > 1 be an integer. For any received

word u ∈ Fqq, r 6 ∆ := deg(u)− k 6 q − 1− k, if

q > max(2

(
k + r

2

)
+ ∆,∆2+ε), k > (

2

ε
+ 1)∆ +

2r + 4

ε
+ 2

for some constant ε > 0, then d(u,RSq(Fq, k)) 6 q − k − r,
which implies that u is not a deep hole.

Cafure, Matera and Privitelli[4] proved the following result
with tools from algebraic geometry:

Theorem 4: ([4]) Let u ∈ Fqq such that 1 6 ∆ := deg(u)−
k 6 q − 1− k. If

q > max((k + 1)2, 14∆2+ε), k > (
2

ε
+ 1)∆,

for some constant ε > 0, then u is not a deep hole.
Using Weil’s character sum estimate and Li-Wan’s new

sieve [11] for distinct coordinates counting, Zhu and Wan [24]
showed the following result:

Theorem 5: ([24]) Let r > 1 be an integer. For any received
word u ∈ Fqq, r 6 ∆ := deg(u) − k 6 q − 1 − k, there are
positive constants c1 and c2 such that if

d < c1q
1/2, (

∆ + r

2
+ 1) log2(q) < k < c2q,

then d(u,RSq(Fq, k)) 6 q − k − r, which implies that u is
not a deep hole.

Recently, Wan and Keti [20] obtained some new results
about deep holes of Reed-Solomon codes based on Dickson
polynomials. Li and Zhu [13] found some new families of
deep holes by reducing the task to solving certain systems of
equations over finite fields.

The deep hole problem for Reed-Solomon codes is also
closely related to the famous MDS conjecture in coding theory.
On one hand, GRS codes are MDS codes. On the other hand,
it is known that all long enough MDS codes are essentially
GRS codes. Following the notation of [15], let Nmin(k, q) be
the minimal integer, if any, such that every [n, k] MDS code
over Fq with n > Nmin(k, q) is GRS and be q+ 2 if no such
integer exists. For the case of k = 3, Segre [16] obtained the
following result:

Theorem 6: ([16]) If q is odd, every [n, 3] MDS code over

Fq with q −
√
q − 7

4
< n 6 q + 1 is GRS.

When q = p is a prime, Voloch [19] obtained the following
result:

Theorem 7: ([19]) If p is an odd prime number, every [n, 3]

MDS code over Fp with p− p

45
+ 2 < n 6 p+ 1 is GRS.

Further, there is a relation for Nmin(k+1, q) and Nmin(k, q)
[15] as follows:

Lemma 1: ([15]) For 3 6 k 6 q − 2, we have

Nmin(k + 1, q) 6 Nmin(k, q) + 1.

Ball [2] showed the following result:
Theorem 8: [2] Let S be a set of vectors of the vector space

Fkq , with the property that every subset of S of size k is a basis.
If |S| = q + 1 and k 6 p or 3 6 q − p + 1 6 k 6 q − 2,
where p is the characteristic of Fq , then S is equivalent to the
following set:

{(1, α, α2, . . . , αk−1) | α ∈ Fq} ∪ {(0, . . . , 0, 1)}.

B. Our result

In this paper, we classify the deep holes in many cases.
Firstly, we show:

Theorem 9: Let p > 2 be a prime number, k > p−1
2 , D =

{α1, α2, . . . , αn} with k < n 6 p. The only deep holes of
RSp(D, k) are generated by functions which are equivalent to
the following:

f(x) = xk, fδ(x) =
1

x− δ
,

where δ ∈ Fp \ D. Here two functions f(x) and g(x) are
equivalent if and only if there exists a ∈ F∗p and h(x) with
degree less than k such that

g(x) = af(x) + h(x).

Our techniques are built on the idea of deep hole trees, and
several results concerning the Erdös-Heilbronn conjecture. We
also show the following theorem based on some results of
finite geometry.

Theorem 10: Given a finite filed Fq with characteristic p >
2, we have
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1) If k + 1 6 p or 3 6 q − p + 1 6 k + 1 6 q − 2, then
Conjecture 1 is true.

2) If 3 6 k <

√
q + 1

4
, then Conjecture 2 is true.

3) If 3 6 k <
p

45
, and q = p is prime, then Conjecture 2

is true.
This paper is organized as follows: Section II presents some

preliminaries; Section III describes the idea of the deep hole
tree; Section IV demonstrates the proof of Theorem 9; Section
V gives the proof of Theorem 10.

II. PRELIMINARIES

A. A criterion for deep holes of RS codes

By definition, deep holes of a code are words that has a
maximum distance to the code. In the case of RS codes, there
is another way to characterize the deep hole as follows. The
following is well known:

Proposition 2: Let Fq be a finite field with characteristic p.
Suppose G is a generator matrix for a RS code C = [n, k]q
with covering radius ρ = n − k, then u ∈ Fnq is a deep hole
of C if and only if

G′ =

[
G
u

]
generates an MDS code.
We provide a proof for the sake of completeness.

Proof: ⇒ Suppose u is a deep hole of C = [n, k]q , we
need to show that G′ is a generator matrix for another MDS
code. Equivalently, we need to show that any k + 1 columns
of G′ are linearly independent.

Assume there exist k+ 1 columns of G′ which are linearly
dependent. Without loss of generality, we assume that the
first k + 1 columns of G′ are linear dependent. Consider the
submatrix consisting of the intersection of the first k + 1
rows and the first k + 1 columns of G′. Hence there exist
a1, . . . , ak ∈ Fq , not all zero, such that

(u1, . . . , uk+1) = a1r1,k+1 + · · ·+ akrk,k+1,

where ri,k+1 is the vector consisting of the first k+1 elements
of the i-th row of G for 1 6 i 6 k. Let v = a1r1+· · ·+akrk ∈
C, where ri is the i-th row of G for 1 6 i 6 k. We have

d(u, v) 6 n− (k + 1) < ρ,

which is a contradiction with the assumption that u is a deep
hole of C.
⇐ Now suppose G′ is a generator matrix for an MDS code,

i.e., any k+1 columns of G′ are linearly independent. We need
to show that d(u,C) = n− k.

Assume that d(u,C) < n − k. Equivalently, there exist
a1, . . . , ak ∈ Fq such that u and v = a1r1 + · · ·+ akrk have
more than k common coordinates, where ri is the i-th row of
G for 1 6 i 6 k. Without loss of generality, we assume that
the first k + 1 coordinates of u and v are the same. Consider
the submatrix consisting of the first k+ 1 columns. Since the
rank of the matrix is less than k + 1, thus the first k + 1
columns of G′ are linearly dependent, which contradicts the
assumption.

Lemma 2: Let D1 ⊂ D2 ⊂ Fq . If f generates a deep
hole for RSq(D2, k), then it also generates a deep hole for
RSq(D1, k).

Proof: Without loss of generality, we assume that D1 =
{α1, . . . , αd1} ⊂ D2 = {α1, . . . , αd1 , . . . , αd2}, where d1 6
d2. Consider the matrix

G′ =


1 1 · · · 1
α1 α2 · · · αd2
...

...
. . .

...
αk−11 αk−12 · · · αk−1d2
f(α1) f(α2) · · · f(αd2)

 .
Since f generates a deep hole for RSq(D2, k), we conclude
that any k + 1 columns of G′ are linearly dependent by
Proposition 2. This implies that any k + 1 columns from
the first d1 columns of G′ are linearly dependent, which is
equivalent to that f generates a deep hole for RSq(D1, k) by
Proposition 2 again.

B. Some additive combinatorics results

In this section, we introduce some additive combinatorics
results that we will use later. The first theorem is about the
estimation of the size of restricted sum sets, which was first
proved by Dias da Silva and Hamidoune [17]. Then Alon,
Nathanson and Ruzsa [1] gave a simple proof using the
polynomial method.

Theorem 11: ([17], [1]) Let F be a field with characteristic
p and n be a positive integer. Then for any finite subset S ⊂ F
we have

|n∧S| > min{p, n|S| − n2 + 1},

where n∧S denotes the set of all sums of n distinct elements
of S.

Brakemeier [3], Gallardo, Grekos and Pihko [7] established
the following theorem:

Theorem 12: ([3], [7]) Let n be a positive integer and S ⊂
Z/nZ. If |S| > n

2 + 1, then

2∧S = Z/nZ,

where 2∧S denotes the set of all sums of 2 distinct elements
of S.

Hence we have the following corollary:
Corollary 1: Let Fp be a prime finite field, S ⊂ F∗p. If

|S| > p+1
2 , then each element of F∗p is the product of two

distinct elements of S.
Proof: Let g be a generator of F∗p. Let

S′ = {e|ge ∈ S} ⊂ Z/(p− 1)Z.

For any given element α = ga ∈ F∗p, we need to show that
there exist two distinct elements b 6= c such that

ga = gbgc,

where b, c ∈ S′. This is equivalent to

a = b+ c,

which follows from Theorem 12.
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III. CONSTRUCTION OF THE DEEP HOLE TREE

Let Fq = {α1, α2, · · · , αq = 0}. The polynomials in Fq[x]
of degree less than q form a Fq-linear space, with a basis

{1, x, . . . , xk−1,
k∏
i=1

(x− αi), . . . ,
q−1∏
i=1

(x− αi)}.

Given a polynomial f(x) ∈ Fq[x] with degree q − 1 we have

f(x) = l(x) + c1

k∏
i=1

(x− αi) + · · ·+ cq−k

q−1∏
i=1

(x− αi),

where l(x) is of degree less than k. We want to determine
when f(x) generates a deep hole. By Proposition 2, f(x)
generates a deep hole of RSq(Fq, k) if and only if

G′ =

[
G
u

]
generates an MDS code, where G is the generator matrix of
RSq(Fq, k), and u = (f(α1), . . . , f(αq)).

From Lemma 2, we conclude that a function that generates
a deep hole for RSq(D2, k), also generates a deep hole
for RSq(D1, k) if D1 ⊂ D2. Instead of considering the
deep holes for RSq(Fq, k) at the first step, we consider a
smaller evaluation set at the beginning and make it increase
gradually. To be more precise, we first determine c1 over
D1 = {α1, . . . , αk+1}, then we determine c2 over D2 =
{α1, . . . , αk+2} based on the knowledge of c1, so on and so
forth. We present the result as a tree, which we will call a
deep hole tree.

Remark 1: Wu and Hong [21] showed that if D = Fq \
{β1, . . . , βs} then fβi(x) = 1

x−βi
generates a deep hole for

RSq(D, k), where 1 6 i 6 s. Zhang, Fu, and Liao [23] got
the same result using a different method. We can also deduce
this from Proposition 2. We will call these deep holes, together
with deep holes generated by functions of degree k, expected
deep holes.

Motivated by Remark 1, we first construct the expected deep
hole tree for RSp(D, k) as follows:

• The root node is 1 without loss of generality, i.e., c1 = 1.
• There are p−k−1 branches of the tree, each with distinct

length in [2, p − k]. And we designate the sequence of
nodes in a branch with length l as bl.

– If l = p− k, then bp−k = {1, 0, . . . , 0}.
– If 2 6 l 6 p − k − 1, then bl = (c1, . . . , cl), where
f = 1

x−αk+l+1
is equivalent to c1

∏k
i=1(x − αi) +

· · ·+ cl
∏k+l−1
i=1 (x− αi).

Proposition 3: The expected deep hole tree is a part of the
full deep hole tree.

Proof: This follows from Remark 1.
Now we can construct the full deep hole tree based on the

expected deep hole tree.

• The root node is 1 without loss of generality, i.e., c1 = 1.
• The children {ci+1} of a node ci, 1 6 i 6 p− k − 1 are

defined as follows: given the ancestors (c1, . . . , ci), for

1

0

0

0

0

5

6

6

4

4

1

⇐ c1, {1, 2, 3}

⇐ c2, {1, 2, 3, 4}

⇐ c3, {1, 2, 3, 4, 5}

⇐ c4, {1, 2, 3, 4, 5, 6}

⇐ c5, {1, 2, 3, 4, 5, 6, 7}

Fig. 1: Expected deep hole tree for p = 7, k = 2

1

0

0

0

0

5

6

6

31

4

4

1

63

⇐ c1, {1, 2, 3}

⇐ c2, {1, 2, 3, 4}

⇐ c3, {1, 2, 3, 4, 5}

⇐ c4, {1, 2, 3, 4, 5, 6}

⇐ c5, {1, 2, 3, 4, 5, 6, 7}

Fig. 2: Full deep hole tree for p = 7, k = 2

γ ∈ Fp, if γ is the child of ci in the expected deep hole
tree, then keep it; otherwise, if

c1

k∏
i=1

(x− αi) + · · ·+ ci

k+i−1∏
i=1

(x− αi) + γ

k+i∏
i=1

(x− αi)

satisfies the property of the function which generates a
deep hole as in Proposition 2, then γ is a child of ci.

That is, we keep the nodes of the expected deep hole tree
and add additional ones if necessary. Now we illustrate the
procedure to construct the deep hole tree by some examples.

Example 1: Let p = 7, k = 2. The evaluation set is ordered
such that αi = i, 1 6 i 6 7. The expected deep hole tree is
shown in Figure 1.

Remark 2: We notice the following in Figure 1:
1) The root corresponds to the evaluation set D1 =
{1, 2, 3}. The expected deep holes are generated by
functions equivalent to

∏2
i=1(x− i).

2) In depth 2, the evaluation set is D2 = {1, 2, 3, 4}. One
of the expected deep holes is generated by the function∏2
i=1(x− i)+

∏3
i=1(x− i), which is equivalent to f5 =

1
x−5 .

3) In depth 3, the evaluation set is D3 = {1, 2, 3, 4, 5}. One
of the expected deep holes is generated by the function∏2
i=1(x− i) + 4

∏3
i=1(x− i) + 4

∏4
i=1(x− i), which is

equivalent to f6 = 1
x−6 .

4) In depth 4, the evaluation set is D4 = {1, 2, 3, 4, 5, 6}.
One of the expected deep holes is generated by the
function

∏2
i=1(x − i) + 5

∏3
i=1(x − i) + 6

∏4
i=1(x −

i) + 6
∏5
i=1(x− i), which is equivalent to f0 = 1

x .
5) In depth 5, the evaluation set is D5 = {1, 2, 3, 4, 5, 6, 7}.

One of the expected deep holes is generated by the
function

∏2
i=1(x− i).

Example 2: Let p = 7, k = 2. The evaluation set is ordered
such that αi = i, 1 6 i 6 7. The full deep hole tree is shown
in Figure 2.

Remark 3: There are four more nodes here than the expected
deep hole tree. They are all in depth three.
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1

0

0

0

0

0

3

1

6

6

4

2

2

6

6

1

⇐ c1, {1, 2, . . . , 6}

⇐ c2, {1, 2, . . . , 7}

⇐ c3, {1, 2, . . . , 8}

⇐ c4, {1, 2, . . . , 9}

⇐ c5, {1, 2, . . . , 10}

⇐ c6, {1, 2, . . . , 11}

Fig. 3: Expected and full deep hole tree for p = 11, k = 5

1) The first additional deep hole is generated by the func-
tion

∏2
i=1(x− i) +

∏3
i=1(x− i) + 3

∏4
i=1(x− i).

2) The second additional deep hole is generated by the
function

∏2
i=1(x− i) +

∏3
i=1(x− i) + 6

∏4
i=1(x− i).

3) The third additional deep hole is generated by the
function

∏2
i=1(x− i) + 5

∏3
i=1(x− i) +

∏4
i=1(x− i).

4) The fourth additional deep hole is generated by the
function

∏2
i=1(x− i) + 5

∏3
i=1(x− i) + 3

∏4
i=1(x− i).

Example 3: Let p = 11, k = 5. The evaluation set is ordered
such that αi = i, 1 6 i 6 11. The expected deep hole tree
and full deep hole tree are shown in Figure 3, which are the
same.

IV. PROOF OF THEOREM 9

We first present several lemmas.
Lemma 3: In depth d = 2, the nodes are the same in both

the expected deep hole tree and the full deep hole tree.
Proof: In depth d = 2, the evaluation set is D =

{α1, α2, . . . , αk+2}. Designate the set of nodes in depth 2
of the expected deep hole tree as S. Firstly, we show that
|S| = p−(k+1). This follows from the fact that the equivalent
functions of the form

f(x) =

k∏
i=1

(x− αi) + c2

k+1∏
i=1

(x− αi), c2 ∈ Fp,

for f = xk and fδ(x) = 1
x−δ take the same value at β ∈

D \ {αk+2} but pairwise different values at αk+2, where δ ∈
Fp \D.

Next, we show that if c2 /∈ S then f(x) =
∏k
i=1(x−αi) +

c2
∏k+1
i=1 (x−αi) does not generate a deep hole. Consider the

following matrix

G =


1 1 · · · 1
α1 α2 · · · αk+2

...
...

. . .
...

αk−11 αk−12 · · · αk−1k+2

f(α1) f(α2) · · · f(αk+2)

 ,

where f(αi) = 0, 1 6 i 6 k, f(αk+1) =
∏k
i=1(αk+1 −

αi), f(αk+2) =
∏k
i=1(αk+2 − αi) + c2

∏k+1
i=1 (αk+2 − αi).

If f(αk+2) = 0, i.e., c2 = 1
αk+1−αk+2

, then there are k+ 1
columns of G, namely, the first k columns and the last column,
which are linearly dependent. Thus f(x) does not generate a
deep hole in this case. In the following, we assume f(αk+2) 6=

0. For any k − 1 elements {β1, . . . , βk−1} ⊂ {α1, . . . , αk},
consider the submatrix

G′ =


1 · · · 1 1 1
β1 · · · βk−1 αk+1 αk+2

...
. . .

...
...

...
βk−11 · · · βk−1k−1 αk−1k+1 αk−1k+2

0 · · · 0 f(αk+1) f(αk+2)

 .

Thus det(G′) = 0 is equivalent to

f(αk+1)

k−1∏
i=1

(αk+2 − βi) = f(αk+2)

k−1∏
i=1

(αk+1 − βi),

that is,

f(αk+2)

f(αk+1)
=

k−1∏
i=1

αk+2 − βi
αk+1 − βi

=

k−1∏
i=1

(1 +
αk+2 − αk+1

αk+1 − βi
).

Hence for each subset of {β1, . . . , βk−1} ⊂ {α1, . . . , αk},
there is a unique c2 such that det(G′) = 0.

In total, there are k + 1 elements of candidate c2 such that
the corresponding f(x) does not generate a deep hole. This
implies that if c2 /∈ S then f(x) does not generate a deep
hole.

In conclusion, in depth d = 2, the nodes in the full deep
hole tree are exactly those in the expected deep hole tree.

Lemma 4: Let p be an odd prime, k > p−1
2 , d > 2 be a

positive integer and Dd = {α1, . . . , αk+d} ⊂ Fp, δ ∈ Fp \Dd.
For any γ ∈ Fp, there exists a subset {β1, . . . , βk} ⊂ Dd such
that the matrix

A =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

1
β1−δ · · · 1

βk−δ γ

 ,

is singular.

Proof: Note that det(A) = det(A′) + det(A′′), where

A′ =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

1
β1−δ · · · 1

βk−δ 0

 , A′′ =


1 · · · 1 0
β1 · · · βk 0
...

. . .
... 0

βk−11 · · · βk−1k 0
1

β1−δ · · · 1
βk−δ γ

 .
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Since
k∏
i=1

(βi − δ) det(A′)

=

∣∣∣∣∣∣∣∣∣∣∣

β1 · · · βk 1
β2
1 · · · β2

k 2δ
...

. . .
...

...
βk1 · · · βkk kδk−1

1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣
=(−1)k

d

dx

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1
β1 · · · βk x
β2
1 · · · β2

k x2

...
. . .

...
...

βk1 · · · βkk xk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣
x=δ

=(−1)k
d

dx

 ∏
16i<j6k

(βj − βi)
k∏
i=1

(x− βi)

 ∣∣∣∣
x=δ

,

thus

det(A′) =
(−1)k∏k

i=1(βi − δ)

∏
16i<j6k

(βj − βi)
d

dx

[
k∏
i=1

(x− βi)

] ∣∣∣∣
x=δ

=
(−1)k∏k

i=1(βi − δ)

∏
16i<j6k

(βj − βi)
k∏
i=1

(δ − βi)
k∑
i=1

1

δ − βi

=
∏

16i<j6k

(βj − βi)
k∑
i=1

1

δ − βi
.

It follows that

det(A) = det(A′) + det(A′′)

=
∏

16i<j6k

(βj − βi)
k∑
i=1

1

δ − βi
+ γ

∏
16i<j6k

(βj − βi)

Hence det(A) = 0 is equivalent to

k∑
i=1

1

δ − βi
+ γ = 0.

Designate the set { 1
δ−βi
|βi ∈ Dd} as S1 with cardinality

k+ d. Since p−1
2 6 k, 2 6 d, from Theorem 11, we conclude

that
|k∧S1| > min{p, k|S1| − k2 + 1}

= p,

which implies that for each γ ∈ Fp, there exists a subset
{β1, . . . , βk} ⊂ Dd such that

∑k
i=1

1
δ−βi

+ γ = 0.

Lemma 5: Let p be an odd prime, k > p−1
2 , d > 2 be a

positive integer and Dd+1 = {α1, . . . , αk+d+1 = δ} ⊂ Fp.
For any δ′ ∈ Fp, δ′ /∈ Dd+1, γ ∈ Fp, γ 6= 1

δ−δ′ , there exists a
subset {β1, . . . , βk} ⊂ Dd+1 \ {δ} such that the matrix

B =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

1
β1−δ′ · · · 1

βk−δ′ γ



is singular.
Proof: Note that det(B) = det(B′) + det(B′′), where

B′ =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

1
β1−δ′ · · · 1

βk−δ′
1

δ−δ′

 ,

B′′ =


1 · · · 1 0
β1 · · · βk 0
...

. . .
... 0

βk−11 · · · βk−1k 0
1

β1−δ′ · · · 1
βk−δ′ γ − 1

δ−δ′

 .
Since

(δ − δ′)
k∏
i=1

(βi − δ′) det(B′)

=

∣∣∣∣∣∣∣∣∣∣∣

β1 · · · βk δ
β2
1 · · · β2

k δ2

...
. . .

...
...

βk1 · · · βkk δk

1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣
=(−1)k

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1
β1 · · · βk δ
β2
1 · · · β2

k δ2

...
. . .

...
...

βk1 · · · βkk δk

∣∣∣∣∣∣∣∣∣∣∣
=(−1)k

∏
16i<j6k

(βj − βi)
k∏
i=1

(δ − βi),

we have

det(B′)

=
(−1)k

(δ − δ′)
∏k
i=1(βi − δ′)

∏
16i<j6k

(βj − βi)
k∏
i=1

(δ − βi)

=
1

δ − δ′
∏

16i<j6k

(βj − βi)
k∏
i=1

βi − δ
βi − δ′

,

and
det(B′′) = (γ − 1

δ − δ′
)

∏
16i<j6k

(βj − βi).

Hence

det(B)

=
∏

16i<j6k

(βj − βi)

[
1

δ − δ′
k∏
i=1

βi − δ
βi − δ′

+
γ(δ − δ′)− 1

δ − δ′

]

=

∏
16i<j6k(βj − βi)

δ − δ′

[
k∏
i=1

βi − δ
βi − δ′

+ γ(δ − δ′)− 1

]
.

It follows that det(B) = 0 is equivalent to

k∏
i=1

(1 +
δ′ − δ
βi − δ′

) = 1− γ(δ − δ′).



7

If |Dd| = k+2, let P =
∏k+2
i=1 (1+ δ′−δ

αi−δ′ ). From Corollary
1, there exist two distinct elements x, y ∈ Dd such that (1 +
δ′−δ
x−δ′ )(1 + δ′−δ

y−δ′ ) = P
1−γ(δ−δ′) , hence∏

βi∈Dd\{x,y}

(1 +
δ′ − δ
βi − δ′

)

=P/[(1 +
δ′ − δ
x− δ′

)(1 +
δ′ − δ
y − δ′

)]

=1− γ(δ − δ′),

for any γ 6= 1
δ−δ′ .

If |Dd| > k + 2, we select a subset D′ ⊂ Dd such that
|D′| = k + 2, then apply the same argument as above.

Lemma 6: Let p be an odd prime, k > p−1
2 , d > 2 be a

positive integer and Dd+1 = {α1, . . . , αk+d+1 = δ} ⊂ Fp.
For any γ ∈ Fp, γ 6= δk, there exists a subset {β1, . . . , βk} ⊂
Dd+1 \ {δ} such that the matrix

C =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

βk1 · · · βkk γ


is singular.

Proof: Note that det(C) = det(C ′) + det(C ′′), where

C ′ =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

βk1 · · · βkk δk

 ,

C ′′ =


1 · · · 1 0
β1 · · · βk 0
...

. . .
... 0

βk−11 · · · βk−1k 0
βk1 · · · βkk γ − δk

 .
Since

det(C ′) =
∏

16i<j6k

(βj − βi)
k∏
i=1

(δ − βi),

det(C ′′) =
∏

16i<j6k

(βj − βi)(γ − δk),

we have

1∏
16i<j6k(βj − βi)

det(C) =

k∏
i=1

(δ − βi) + γ − δk.

Thus det(C) = 0 is equivalent to

k∏
i=1

(δ − βi) = δk − γ.

If |Dd| = k+2, let P =
∏k+2
i=1 (δ−αi). From Corollary 1, there

exist two distinct elements x, y ∈ Dd such that (δ−x)(δ−y) =

P
δk−γ . Hence, ∏

βi∈Dd\{x,y}

(δ − βi) = δk − γ,

for any γ 6= δk.
If |Dd| > k + 2, we select a subset D′ ⊂ Dd such that

|D′| = k + 2, then apply the same argument as above.
Now we prove Theorem 9.

Proof: (of Theorem 9) Proceed by induction on the depth
of the full deep hole tree.
Basis case. This follows from Lemma 3.
Inductive step. We need to show that if the set of nodes of
the full deep hole tree coincide with the nodes of the expected
deep hole tree in the same depth d > 2, then there are no ad-
ditional nodes in depth d+1 except the expected ones. Denote
the corresponding evaluation set by Dd = {α1, . . . , αk+d} in
depth d and Dd+1 = {α1, . . . , αk+d, αk+d+1 = δ} in depth
d+1. In order to show there are no new nodes in depth d+1,
There are three cases to consider.
Case 1: We need to show the branch, which is corresponding
to the function f = 1

x−δ , will not continue in the depth d+ 1.
It suffices to show that there exists a subset {β1, . . . , βk} ⊂
{α1, . . . , αk+d} such that for any γ ∈ Fp and matrix

A =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

1
β1−δ · · · 1

βk−δ γ

 ,

we have det(A) = 0. This follows from Lemma 4.
Case 2: We need to show that the branch, which is cor-
responding to the function f = 1

x−δ′ , where δ′ /∈ Dd+1,
has only one child in depth d + 1. It suffices to show that
there exists a subset {β1, . . . , βk} ⊂ Dd such that for any
δ′ /∈ Dd+1, γ ∈ Fp, γ 6= 1

δ−δ′ and matrix

B =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

1
β1−δ′ · · · 1

βk−δ′ γ

 ,

we have det(B) = 0. This follows from Lemma 5.
Case 3: We need to show that the branch, which is correspond-
ing to the function f = xk has only one child in each depth. It
suffices to show that there exists a subset {β1, . . . , βk} ⊂ Dd

such that for any γ 6= δk and matrix

C =


1 · · · 1 1
β1 · · · βk δ
...

. . .
...

...
βk−11 · · · βk−1k δk−1

βk1 · · · βkk γ

 ,

we have det(C) = 0. This follows from Lemma 6.
From the principle of induction, the theorem is proved.
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V. PROOF OF THEOREM 10

Proof: There are 3 cases to prove.
Case 1. Let RSq(Fq, k) be an extended GRS code over the
finite field Fq whose characteristic p is odd. Let one of its
generator matrix be

G =


1 1 · · · 1
α1 α2 · · · αq
α2
1 α2

2 · · · α2
q

...
...

. . .
...

αk−11 αk−12 · · · αk−1q

 ,
where α1, . . . , αq are distinct element of Fq .

Suppose that a word u ∈ Fqq is a deep hole of RSq(Fq, k).
From proposition 2, this is equivalent to the fact that

G′ =

[
G
u

]
generates another linear MDS code, where

u = (u1, u2, . . . , uq).

Thus the set

S = {c1, . . . , cq} ∪ {(0, . . . , 0, 1)},

where ci is the i-th column of G′ for 1 6 i 6 q, has size q+1
and has the property that every subset of S of size k+ 1 is a
basis.

Since k + 1 6 p or 3 6 q − p + 1 6 k + 1 6 q − 2, by
Theorem 8, we deduce that S is equivalent to the set

{(1, α, α2, . . . , αk) | α ∈ Fq} ∪ {(0, . . . , 0, 1)}.

Thus we conclude that

u(x) = axk + f6k−1(x), a 6= 0;

where f6k−1(x) denotes a polynomial with degree not larger
than k − 1.
Case 2. Firstly, we get an estimation of Nmin(k, q). Combining
Theorem 6 and Lemma 1, we conclude that

Nmin(k, q) 6 Nmin(3, q) + k − 3

6 dq −
√
q − 7

4
e+ k − 3

6 q − 1.

Now let G be a generator matrix of RSq(F ∗q , k) of the
following form

G =


1 1 · · · 1
α1 α2 · · · αq−1
α2
1 α2

2 · · · α2
q−1

...
...

. . .
...

αk−11 αk−12 · · · αk−1q−1

 ,
where α1, . . . , αq−1 are distinct elements of F∗q . From propo-
sition 2, a word u ∈ Fq−1q is a deep hole of RSq(F ∗q , k) if
and only if

G′ =

[
G
u

]

generates another linear MDS code C2, where

u = (u1, u2, . . . , uq−1).

Since C2 is of length q − 1, thus the matrix G′ is equivalent
to a Vandermonde matrix of rank k + 1. Notice that G is
the given Vandermonde matrix of rank k. Thus there are two
possibilities of u, i.e., its Lagrange interpolation polynomial
satisfies the following conditions:

u1(x) = axk + f6k−1(x), a 6= 0;

or
u2(x) = bxq−2 + f6k−1(x), b 6= 0;

where f6k−1(x) denotes a polynomial with degree not larger
than k − 1.

To show that u2(x) satisfies the condition, we prove that the
submatrix U consisted of the first k+1 columns of G′ is non-
singular without loss of generality. Since the vector generated
by f6k−1(x) is a linear combination of the k row vectors of
G, thus

bdet(U) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αk+1

α2
1 α2

2 · · · α2
k+1

...
...

. . .
...

αk−11 αk−12 · · · αk−1k+1

αq−21 αq−22 · · · αq−2k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since αq−1i = 1 for 1 6 i 6 k + 1, we have

b

k+1∏
i=1

αi det(U) =

∣∣∣∣∣∣∣∣∣∣∣

α1 α2 · · · αk+1

α2
1 α2

2 · · · α2
k+1

...
...

. . .
...

αk1 αk2 · · · αkk+1

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

Hence

b

k+1∏
i=1

αi det(U) = (−1)k
∏

1≤i<j≤k+1

(αj − αi).

Thus det(U) 6= 0, which implies U is non-singular.
Case 3. This is similar with the proof of case 2 and we will
make use of Theorem 7.

VI. CONCLUDING REMARKS

In this paper, we classify deep holes completely of the
generalized Reed-Solomon codes RSp(D, k) for the case that
p is a prime and k > p−1

2 . If p is a prime and k < p−1
2 ,

then the problem of classifying deep holes is still kept open.
On the other hand, we suspect that a similar result holds over
finite fields of composite order, and leave it as another open
problem.
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