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Abstract

For an error-correcting code and a distance bound, thelist decoding prob-
lem is to compute all the codewords within a given distance to a received
message. Thebounded distance decodingproblem is to find one codeword
if there is at least one codeword within the given distance, or to output the
empty set if there is not. Obviously the bounded distance decoding prob-
lem is not as hard as the list decoding problem. For a Reed-Solomon code
[n, k]q, a simple counting argument shows that for any integer0 < g < n,
there exists at least one Hamming ball of radiusn−g, which contains at least(
n
g

)
/qg−k many codewords. Let̂g(n, k, q) be the smallest positive integerg

such that
(
n
g

)
/qg−k ≤ 1. One knows that

k − 1 ≤ ĝ(n, k, q) ≤
√
n(k − 1) ≤ n.

For the distance bound up ton−
√
n(k − 1), it is known that both the list and

bounded distance decoding can be solved efficiently. For the distance bound
betweenn −

√
n(k − 1) andn − ĝ(n, k, q), we do not know whether the

Reed-Solomon code is list, or bounded distance decodable, nor do we know
whether there are polynomially many codewords in all balls of the radius. It
is generally believed that the answers to both questions are no.

In this paper, we prove: (1) List decoding can not be done for radius
n− ĝ(n, k, q) or larger, unless the discrete logarithm overFqĝ(n,k,q)−k is easy.
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†Partially supported by NSF.



(2) Leth andg be positive integers satisfyingq ≥ max(g2, (h− 1)2+ε) and
g ≥ ( 4

ε +2)(h+1) for a constantε > 0. We show that the discrete logarithm
problem overFqh can be efficiently reduced by a randomized algorithm to the
bounded distance decoding problem of the Reed-Solomon code[q, g − h]q
with radiusq − g. These results show that the decoding problems for the
Reed-Solomon code are at least as hard as the discrete logarithm problem
over certain finite fields. For the list decoding problem of Reed-Solomon
codes, although the infeasible radius that we obtain is much larger than the
radius which is known to be feasible, it is the first non-trivial bound. Our
result on the bounded distance decodability of Reed-Solomon codes is also
the first of its kind. The main tools to obtain these results are an interesting
connection between the problem of list-decoding of Reed-Solomon code and
the problem of discrete logarithm over finite fields, and a generalization of
Katz’s theorem on representations of elements in an extension finite field by
products of distinct linear factors.

1 Introduction

An error-correcting codeC over a finite alphabetΣ is an injective mapφ : Σk →
Σn. When we need to transmit a message ofk letters over a noisy channel, we
apply the map on the message first ( i.e. encode the message ) and send its im-
age (i.e. the codeword) ofn letters over the channel. The Hamming distance be-
tween two sequence of letters of the same length is the number of positions where
two sequences differ. A good error-correcting code should have a largeminimum
distanced, which is defined to be the minimum Hamming distance between two
distinct codewords inφ(Σk). A received message, possibly corrupted, but with no
more than(d − 1)/2 errors, corresponds to a unique codeword and thus may be
decoded into the original message despite errors occur during the communication.

Error-correcting codes are widely used in practice. They are mathematically
interesting and intriguing. This subject has attracted the attention of theoretical
computer science community recently. Several major achievements of theoretical
computer science, notably the original proof of PCP theorem and de-randomization
techniques, rely heavily on the techniques in error-correcting codes. We refer to
the survey [19] for details.

For the purpose of efficient encoding and decoding,Σ is usually set to be the
finite fieldFq of q elements, and the mapφ is Fq-linear. Numerous error correcting
codes have been proposed, among them, the Reed-Solomon codes are particularly
important. They are deployed to transmit information from and to spaceships, and
to store information in optical media [22].

Notation: For a polynomialf(x) and a setS = {x1, · · · , xn}, we use(f(x))x∈S
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to denote the vector obtained by evaluatingf(x) at the elements inS, that is,

(f(x))x∈S = (f(x1), · · · , f(xn)).

Let S be a subset ofFq with |S| = n. The Reed-Solomon code[n, k]q, is the
map from(a0, a1, · · · , ak−1) ∈ Fk

q to

(a0 + a1x+ · · ·+ ak−1x
k−1)x∈S ∈ Fn

q .

The choice ofS will not affect our results in this paper. Since any two different
polynomials with degreek−1 can share at mostk−1 points, the minimum distance
of the Reed-Solomon code isn− k + 1.

1.1 Related works

If the radius of a Hamming ball is less than half of the minimum distance, there
is at most one codeword in the Hamming ball. Finding the codeword is called
unambiguous decoding. It can be efficiently solved, see [2] for a simple algorithm.
If we gradually increase the radius, there may be two or more codewords lying
in some Hamming balls. Can we efficiently enumerate all the codewords in any
Hamming ball of certain radius? This is the so called list decoding problem. The
notion was first introduced by Elias [6]. There was virtually no progress on this
problem for radius slightly larger than half of the minimum distance, until Sudan
published his influential paper [18]. His result was subsequently improved, the
current best algorithm [11] solves the list decoding problem for radius as large as
n −

√
n(k − 1). The work [11] sheds new light on the list decodability of Reed-

Solomon codes. To the other extreme, if the radius is greater than or equal to the
minimum distance, there are exponentially many codewords in some Hamming
balls.

The decoding problem of Reed-Solomon codes can be reformulated into the
problem ofcurve fittingor polynomial reconstruction. In this problem, we are
givenn points

(x1, y1), (x2, y2), · · · , (xn, yn)

in F2
q . The goal is to find polynomials of degreek − 1 that pass at leastg points.

In this paper, we only consider the case when then given points have distinct
x-coordinates. If we allow multiple occurrences ofx-coordinates, the problem
is NP-hard [7, Theorem 6.1], and it is not relevant to the Reed-Solomon decod-
ing problem. Ifg ≥ (n + k)/2, it corresponds to the unambiguous decoding of
Reed-Solomon codes. Ifg >

√
n(k − 1), the radius is less thann −

√
n(k − 1),

which is essentially the Johnson radius [12, 10], the problem can be solved by the
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Guruswami-Sudan algorithm [11]. Ifg ≤ k, it is possible that there are exponen-
tially many solutions, but finding one is very easy.

It is known that any Hamming ball of the Johnson radius contains only poly-
nomially many codewords. In this paper, we study the following question: How
large can we increase the radius before the list decoding problem or the bounded
distance decoding problem become infeasible? The question has been intensively
investigated for Reed-Solomon codes and other error-correcting codes. The case
of general non-linear codes has been solved [7], where it was proved that there
exist codes with exponentially many codewords in Hamming balls of radius a little
bigger than Johnson radius. The case for linear codes is much harder. Some par-
tial results have been obtained in [9, 8], where it was proved that there exist linear
codes with super-polynomially many codewords in Hamming balls of radius close
to Johnson radius. However, none of them apply to Reed-Solomon codes. No neg-
ative result is known about the list decoding of Reed-Solomon codes, except for a
simple combinatorial bound given by Justesen and Hoholdt [13], which states that
for any positive integerg < n, there exists at least one Hamming ball of radius
n − g, which contains at least

(
n
g

)
/qg−k many codewords. This bound matches

the intuition well. Consider an imaginary algorithm as follows: randomly selectg
points from then input points, and use polynomial interpolation to get a polyno-
mial of degree at mostg − 1 which passes theseg points. Then with probability
1/qg−k, for a random word inFn

q , the resulting polynomial has degreek − 1. The
sample space has size

(
n
g

)
. Thus heuristically, the number of codewords in Ham-

ming balls of radiusn − g is at least
(
n
g

)
/qg−k on the average. In the same paper,

Justesen and Hoholdt also gave an upper bound for the radius of the Hamming balls
containing a constant or fewer number of codewords.

1.2 Our results

If we gradually increaseg, starting fromk and going towardn, then
(
n
g

)
/qg−k will

fall below 1 at some point. However,g is still very far away from
√
n(k − 1).

Let ĝ(n, k, q) be the smallest positive integer such that
(
n
g

)
/qg−k is no great than

1. Roughly speaking, a Hamming ball with a random center and the radiusn −
ĝ(n, k, q) contains on average about one codeword. The following lemma shows
that there is a gap betweenĝ(n, k, q) and

√
n(k − 1).

Lemma 1 For positive integersk < g < n, if g >
√
nk, thenqg−k ≥ ng−k >

(
n
g

)
.

This implies that̂g(n, k, q) ≤
√
nk.

For a fixed ratek/n, the radiusn−ĝ(n, k, q) has relative radius approaching the
relative distance asn approaches infinity. However it is not known whether there
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exist Reed-Solomon codes such that some Hamming balls of radiusn− ĝ(n, k, q)
contain exponential number of codewords. Then how hard is it to do list decoding
for the radiusn− ĝ(n, k, q)?

Instead of trying to find a Hamming ball with a large number of codewords
of radiusn − ĝ(n, k, q), we take another approach. We show that even if there is
only a small number of codewords in every Hamming ball of this radius, the list
decoding problem is still infeasible, by relating this question to discrete logarithm
over finite fields. The discrete logarithm problem in finite fieldFqm , is to compute
an integere such thatt = γe, given a generatorγ of a subgroup ofF∗

qm andt in the
subgroup. The general purpose algorithms to solve the discrete logarithm problem
are the number field sieve and the function field sieve (for a survey see [16]). They
have a conjectured subexponential time complexity

exp(c(log qm)1/3(log log qm)2/3)

for some constantc, whenq is small, orm is small.
We prove that if the list decoding of the[n, k]q Reed-Solomon code is feasible

for radiusn − ĝ(n, k, q), then the discrete logarithm overFqĝ(n,k,q)−k is easy. In
other words, we prove that the list decoding is not feasible for radiusn− ĝ(n, k, q)
or larger, assuming that the discrete logarithm overFqĝ(n,k,q)−k is hard. Note that it
does not rule out the possibility that there are only polynomially many codewords
in all Hamming balls of radiusn − ĝ(n, k, q), even assuming the intractability of
the discrete logarithm overFqĝ(n,k,q)−k .

Theorem 1 If there exists an algorithm solving the list decoding problem of radius
n−ĝ(n, k, q) for the Reed-Solomon code[n, k]q in random timeqO(1), then discrete
logarithm over the finite fieldFqĝ(n,k,q)−k can be computed in random timeqO(1).

Let us consider a numerical example. Setn = 1000, k = 401, q = 1201.
The unambiguous decoding algorithm can correct up tob(n − k + 1)/2c = 300
errors. The Guruswami-Sudan algorithm can correctbn−

√
n(k − 1)c = b1000−√

1000 ∗ 400c = 368 errors. Can we list decode up ton − ĝ(n, k, q) = 1000 −
499 = 501 errors in reasonable time? The theorem shows that if we can, then the
discrete logarithm overF120198 can be solved efficiently, which is widely regarded
as unlikely at present.

When the list decoding problem is hard for certain radius, or a Hamming ball
contains too many codewords for us to enumerate all of them, we can ask for an
efficientbounded distance decodingalgorithm, which only needs to output one of
the codewords in the ball, or output the empty set in case that the ball does not
contain any codeword. However, we prove that the bounded distance decoding is
hard as well.
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Theorem 2 Let q be a prime power andh be a positive integer satisfyingq ≥
max(g2, (h − 1)2+ε) and g ≥ (4

ε + 2)(h + 1) for any constantε > 0. If the
bounded distance decoding problem of radiusq − g for the Reed-Solomon code
[q, g − h]q can be solved in random timeqO(1), the discrete logarithm problem
overFqh can be solved in random timeqO(1).

For q, g, h satisfying the conditions in the theorem,(
q
g

)
qg−(g−h)

≥ (q/g)g

qh
=
qg−h

gg
≥ (g2)g−h

gg
= gg−2h ≥ g4h/ε.

Hence there is a Hamming ball of radiusq − g containing exponentially many
codewords. It is infeasible to do list decoding under these parameters. This result
has a drawback that it can only be applied to the low rate codes, sinceg−h ≤ g ≤√
q.

It is generally believed that the list decoding problem and the bounded distance
decoding for Reed-Solomon codes are computationally hard if the number of er-
rors is greater thann−

√
n(k − 1) and less thann− k. This problem is even used

as a hard problem to build public key cryptosystems and pseudo-random genera-
tors [15]. A similar problem, noisy polynomial interpolation [3], was proved to be
vulnerable to the attack of lattice reduction techniques, hence is easier than origi-
nally thought. This raises concerns on the hardness of polynomial reconstruction
problem. Our results confirm the belief that polynomial reconstruction problem is
hard for certain parameters, under a well-studied hardness assumption in number
theory and hence provide a guideline for selecting parameters for many protocols
based on the problem.

1.3 Techniques

We rely on the idea of index calculus to prove these two theorems. Our application
of index calculus however is different from its usual applications, in that we use it
to prove a hardness result (a computational lower bound), rather than a computa-
tional upper bound. We naturally come across the following question in the proofs:
In a finite fieldFqh , for anyα such thatFqh = Fq[α], canFq+α generate the multi-
plicative group(Fqh)∗? This interesting problem has a lot of applications in graph
theory, and it has been studied by several number theorists. Chung [5] proved that
if q > (h−1)2, then(Fqh)∗ is generated byFq+α. Wan [21] showed a negative re-
sult that ifqh−1 has a divisord > 1 andh ≥ 2(q logq d+logq(q+1)), then(Fqh)∗

is not generated byFq + α for someα. Katz [14] applied the Lang-Weil method,
and showed that for everyh ≥ 2 there exists a constantB(h) such that for any
finite fieldFq with q ≥ B(h), any element in(Fqh)∗ can be written as a product of
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exactlyn = h+ 2 distinct elements fromFq + α. By a simple counting argument,
B(h) has to be an exponential function inh. In this paper, we use Weil’s character
sum estimate and a simple sieving to prove that ifq ≥ max(g2, (h − 1)2+ε) and
g ≥ (4

ε + 2)(h + 1) for any constantε > 0, then any element in(Fqh)∗ can be
written as a product of exactlyg distinct elements fromFq + α. In comparison to
Katz’s theorem, we use a biggern and manage to decreaseB(h) to a polynomial
function inh.

This paper is organized as follows. In Section 2, we show the connection be-
tween the decoding problem of Reed-Solomon codes and the discrete logarithm
problem over finite fields. In Section 3, we present the proof of Theorem 1. In
Section 4, we present the proof of Theorem 2. In Section 5, we show an inter-
esting duality between the size of a group generated by linear factors, and the list
size in Hamming balls of Reed-Solomon codes. In Appendix, Section A, we prove
Lemma 1.

2 The decoding problem and the discrete logarithm

Let q be a prime power and letFq be the finite field withq elements. LetS be a
subset ofFq of n elements. For a positive integerg ≤ n, denote

P(S, g) = {A|A ⊆ S, |A| = g}.

Clearly, the setP(S, g) has
(
n
g

)
elements. For anyA ∈ P(S, g), let

PA(x) =
∏
a∈A

(x− a).

This is a monic polynomial of degreeg which splits overFq as a product of distinct
linear factors.

Let 1 < h < g be integers. Leth(x) be an irreducible monic polynomial over
Fq of degreeh. Define a map

ψ : P(S, g) → Fq[x]/(h(x))

by
ψ(A) = PA(x) (mod h(x)).

For anyf(x) in Fq[x]/(h(x)) with degree at mosth−1 , if ψ−1(f(x)) is not empty,
then there exists at least one monic polynomialt(x) ∈ Fq[x] of degreeg − h and
oneA ∈ P(S, n) such that

f(x) + t(x)h(x) = PA(x).
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For anya ∈ A,PA(a) = 0 andt(a) = −f(a)/h(a). Recall thath(x) is irreducible
overFq henceh(a) 6= 0 for all a ∈ A. Sincef(x) + t(x)h(x) has degreeg, there
are exactlyg elements inS which are the roots off(x) + t(x)h(x) = 0, the curve
y = t(x) passes exactlyg points in the following set ofn points:

{(a,−f(a)/h(a))|a ∈ S}.

For any polynomialf ∈ Fq[x] of degree at mosth−1, letTf(x) be the set of monic
polynomialt(x) ∈ Fq[x] of degreeg − h such thatf(x) + t(x)h(x) = PA(x) for
someA ∈ P(S, g). LetCf(x) be the set of codewords with distance exactlyn− g

to the received word(−f(a)/h(a)− ag−h)a∈S in Reed-Solomon code[n, g−h]q.
It is then easy to prove

Lemma 2 There is a one-to-one correspondence between elements ofTf(x) and
Cf(x), by sending anyt(x) ∈ Tf(x) to (t(a)− ag−h)a∈S .

Remark 1 According to the pigeonhole principle, there must exist a polynomial
f̂(x) such that

|ψ−1(f̂(x))| ≥ |P(S, g)|
|Fq[x]/(h(x))|

=

(
n
g

)
qh
.

This provides another proof that there is a Hamming ball of radiusn− g with
(n

g)
qh

many codewords.

Suppose that we knowf(x) andh(x), but nott(x), can we still findA? For-
mally we are asking the following question:

Input: A prime powerq, an irreducible polynomialh(x) overFq of degreeh,
a polynomialf(x) ∈ Fq[x], a positive integerg and a setS ⊆ Fq.

Problem I: A list of all the subsetsA ∈ P(S, g) such that

f(x) ≡ PA(x) (mod h(x)).

Problem II: One ofA ∈ P(S, g) such that

f(x) ≡ PA(x) (mod h(x)).

Lemma 3 Problem I can be reduced in polynomial time to the list decoding prob-
lem of Reed-Solomon code[n, g−h]q at radiusn−g. Problem II can be reduced in
polynomial time to the bounded distance decoding problem of Reed-Solomon code
[n, g − h]q at radiusn− g.
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Proof: The vector(−f(a)/h(a)− ag−h)a∈S can be calculated from the input.
Using list decoding algorithm or bounded distance decoding algorithm, we can
computet(x) of degree at mostg− h− 1 such thatt(a) = −f(a)/h(a)− ag−h at
g manya’s. We findA by factoringf(x) + (t(x) + xg−h)h(x). 2

If A can be found, then in the fieldFq[x]/(h(x)), f(x) can be represented as
a product of elements from a small set. It is called asmoothrepresentation with
factor basesx − S in computational number theory. The capability of finding
smooth representation constitutes a powerful attack against hard number theory
problems like integer factorization and the discrete logarithm over finite fields.
The lemma implies that decoding Reed-Solomon codes provides a way to find a
smooth representation of any field element. Thus naturally an efficient decoding
algorithm produces an attack for the discrete logarithm over finite fields. This idea
first appeared in [4], and it provides a general framework for the following proofs.

3 The proof of Theorem 1

Given a Reed-Solomon code[n, k]q, let h = ĝ(n, k, q) − k. Recall that̂g(n, k, q)
is the smallest positive integer such that

(
n
g

)
/qg−k is no great than1, andh is

the degree of an irreducible polynomialh(x). We show that there is an efficient
algorithm to solve the discrete logarithm overFqh = Fq[x]/(h(x)) if there is an
efficient list decoding algorithm for the Reed-Solomon code[n, k]q with radius
n− ĝ(n, k, q) = n− k − h.

Letα = x (mod h(x)). Suppose that we are given the baseb(α) and we need
to find out the discrete logarithm ofv(α) with respect to the base, whereb andv
are polynomials overFq of degree at mosth− 1. Select anyS ⊆ Fq, |S| = n. We
use the index calculus algorithm with factor bases(α− a)a∈S .

Algorithm 1 1. Initialize an empty set of linear equations.

2. Repeatn times

(a) Randomly select an integeri between0 andqh − 2. Computef(x) =
b(x)i (mod h(x)).

(b) Apply the list decoding algorithm to find the list ofA ∈ P(S, ĝ(n, k, q))
such thatf(x) ≡ PA(x) (mod h(x)). If the list is empty, go back to
2a.

(c) Otherwise we haverelations

f(α) =
∏

a∈A1

(α− a) = · · · =
∏

a∈Al

(α− a)
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for someA1, A2, · · · , Al ∈ P(S, ĝ(n, k, q)), wherel is the list size.
From the relations, we obtain linear equations mod(qh − 1):

i ≡
∑
a∈A1

logb(α)(α− a) ≡ · · · ≡
∑
a∈Al

logb(α)(α− a).

Add them to the set of linear equations.

3. For all s ∈ S do

(a) Randomly select an integeri between0 andqh − 2. Computef(x) =
b(x)i/(x− a) (mod h(x)).

(b) Apply the list decoding algorithm to find the list ofA ∈ P(S, ĝ(n, k, q))
such thatf(x) ≡ PA(x) (mod h(x)). If the list is empty, go back to
3a.

(c) Otherwise we haverelations

f(α) =
∏

a∈A1

(α− a) = · · · =
∏

a∈Al

(α− a)

for someA1, A2, · · · , Al ∈ P(S, ĝ(n, k, q)), wherel is the list size.
From the relations, we obtain linear equations mod(qh − 1):

i ≡
∑
a∈A1

logb(α)(α− a) + logb(α)(α− s) ≡ · · ·

≡
∑
a∈Al

logb(α)(α− a) + logb(α)(α− s).

Add them to the set of linear equations.

4. In these equations,logb(α)(α − a), a ∈ S, are unknowns. If the system has
full rank, solve it; Otherwise go back to Step 2.

5. Randomly select an integeri between0 and qh − 2. Computef(x) =
b(x)iv(x) (mod h(x)).

6. Apply the list decoding algorithm to find a list ofA ∈ P(S, g) such that
f(x) ≡ PA(x) (mod h(x)). If the list is empty, go back to 5.

7. Otherwise we have a relation

f(α) =
∏
a∈A

(α− a).
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Hence
i+ logb(α) v(α) =

∑
a∈A

logb(α)(α− a),

we can solvelogb(α) v(α) immediately.

Now we analyze the time complexity of the algorithm. An efficient list decod-
ing algorithm implies:

1. There are only polynomially many codewords in any Hamming ball of radius
n − ĝ(n, k, q), which along with Lemma 2 implies that|ψ−1(f)| ≤ qc for
anyf ∈ Fqh and a constantc. Hence

|ψ(P(S, ĝ(n, k, q)))| ≥

(
n

ĝ(n,k,q)

)
qc

≥ qĝ(n,k,q)−k

qc
=
qh

qc
.

Thus in Step 2b, Step 3b and Step 6, sincef(α) is a random element inF∗
qh ,

the list decoding algorithm outputs nonempty list with probability bigger

than1/qc. Note that1q ≤
( n

ĝ(n,k,q))
qĝ(n,k,q)−k ≤ 1.

2. And they can be found in polynomial time. Each step will take polynomial
time. Thus all steps in the algorithm runs in polynomial time.

So we only need to show

Lemma 4 The linear system can yield a unique solution with high probability after
polynomially number of iterations of the main loop (from Step 2 to Step 4).

Informally sincei is picked randomly, the probability that a new equation is
linearly independent to previous ones is very high at the beginning of the algorithm.
It would not take long time before we have an independent linear system. Solving
the system of equations gives uslogb(α)(α− a) for all a ∈ S.

Proof: (of Lemma 4) The linear system is defined in the ringZ/(qh − 1),
which is usually not a field. We may proceed with the linear system solver. If
the algorithm encounters a zero-divisor in the ring, we can factorqh − 1. We
then apply the linear system solver to each modulus. We get the solution for the
original system using the Chinese Remainder Theorem. In the case that a modulus
is a prime power, we can solve the linear system modulo the prime first, and use
Hensel lifting to solve the system modulo the prime power. Sinceqh − 1 has at
mosth log q many distinct prime factors, this issue will slow the algorithm down
only by a polynomial factor. Now we may assume that the linear system is defined
over a finite field.
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Let w = d2 log ne + 3. Let T be the set of binary vectors with lengthn
and weightg. If the iteration of the main loop is repeatedw times, we have se-
lected in Step 2anw many integersi1, i2, · · · , inw, and in Step 3anw many in-
tegersinw+1, · · · , i2nw, and obtained relations forbij (α) ( 1 ≤ j ≤ nw ) and
bij (α)/(α − a) (nw + 1 ≤ j ≤ 2nw anda ∈ S). This amounts to selecting at
least2nw vectors fromT independently. And{logb(α)(α − s)|s ∈ S} forms a
basis for the linear system. According to the following proposition, proved in [17],
we getn independent equations with probability more than1 − 1

2n . Note that it
is not required that the vectors are selected uniformly. This finishes the proof of
Theorem 1. 2

Proposition 1 LetV be a vector space over a fieldF with dimV = n. LetT be a
finite set of vectors inV and lete1, · · · , en be a basis ofV . Letw = d2 log ne+3.
Suppose we choose2nw vectorsu1, u2, · · · , unw, v1, v2, · · · , vnw independently
fromT . LetV ′ be the subspace ofV spanned byu1, u2, · · · , unw and the vectors
ej + v(j−1)w+i for j = 1, 2, · · · , n and i = 1, · · · , w. Then with probability at
least1− 1

2n , we have thatV = V ′.

4 The proof of Theorem 2

We first prove the following number theoretic result.

Theorem 3 Let h be a positive integer. Assumeq ≥ max(g2, (h − 1)2+ε) and
g ≥ (4

ε + 2)(h + 1) for a constantε > 0. Then for anyα such thatFq[α] = Fqh ,
every element inF∗

qh can be written as a product of exactlyg distinct factors from
{α+ a|a ∈ Fq}.

Proof: We follow the method used in [21]. Fix anα such thatFq[α] = Fqh .
Forβ ∈ F∗

qh , letNg(β) denote the number of solutions of the equation

β =
g∏

i=1

(α+ ai), ai ∈ Fq,

where theai’s are distinct. Permutations ofai’s are counted as different solutions.
We need to show that the numberNg(β) is always positive ifq ≥ max(g2, (h −
1)2+ε) andg ≥ (4

ε + 2)(h+ 1).
LetG be the character group of the multiplicative groupF∗

qh . That is,G is the
set of group homomorphisms fromF∗

qh to C∗. The groupG is a cyclic group of

12



orderqh − 1 and thus

∑
χ∈G

χ(
g∏

i=1

(α+ ai)/β) =

{
qh − 1, if β =

∏
i(α+ ai),

0, otherwise.

From this, we deduce

Ng(β) =
1

qh − 1

∑
ai∈Fq , ai distinct

∑
χ∈G

χ−1(β)χ(
g∏

i=1

(α+ ai)).

Since the second summand is always non-negative, a simple inclusion-exclusion
sieving implies that

Ng(β) ≥ 1
qh − 1

(
∑

ai∈Fq ,1≤i≤g

−
∑

1≤i1<i2≤g

∑
ai∈Fq ,ai1

=ai2

)

∑
χ∈G

χ−1(β)χ(
g∏

i=1

(α+ ai)).

For non-trivial characterχ, one has the well-known Weil estimate [21]

|
∑
a∈Fq

χ(α+ a)| ≤ (h− 1)
√
q

and thus

|
∑

ai∈Fq ,1≤i≤g

g∏
i=1

χ(α+ ai)| ≤ (h− 1)gqg/2.

If χ2 6= 1, then for fixedi1 < i2, Weil’s estimate implies that

|
∑

ai∈Fq ,ai1
=ai2

g∏
i=1

χ(α+ ai)| ≤ (h− 1)g−1q(g−1)/2 ≤ (h− 1)gqg/2.

If χ2 = 1 butχ 6= 1, then for fixedi1 < i2, Weil’s estimate implies that

|
∑

ai∈Fq ,ai1
=ai2

g∏
i=1

χ(α+ ai)| ≤ q(h− 1)g−2q(g−2)/2 ≤ (h− 1)gqg/2.

Separating the trivial character from the above lower estimate forNg(β), we de-
duce that

Ng(β) ≥
qg −

(
g
2

)
qg−1

qh − 1
− (1 +

(
g

2

)
)(h− 1)gqg/2.

13



In order forNg(β) > 0, it suffices to have the inequality

(q −
(
g

2

)
)qg/2−1−h > (1 +

(
g

2

)
)(h− 1)g.

This inequality is clearly satisfied if bothq > 2
(
g
2

)
+ 1 = g(g − 1) + 1 and

qg/2−1−h > (h−1)g. These two inequalities are satisfied if we takeq ≥ max(g2, (h−
1)2+ε) andg ≥ (4

ε + 2)(h+ 1). The theorem is proved. 2

Remark 2 As we should see immediately, the expressionNg(β)/g! is the num-
ber of codewords in the Hamming ball with radiusn − g and with center at
(−f(a)/h(a) − ag−h)a∈Fq

whereh(x) is the minimum polynomial ofα over Fq

andf(x) is the polynomial of degree at mosth − 1 representingβ. Adjusting the
parameters will give us an exponential lower bound forNg(β)/g!. For example, if
q > 2

(
g
2

)
+2 andg ≥ (4

ε +2)(h+1), the same proof shows thatNg(β) ≥ qg−h−1

and thus
Ng(β)
g!

≥ qg−h−1

g!

which is exponential for certain parametersq, g andh.

Let q ≥ max(g2, (h − 1)2+ε) and g ≥ (4
ε + 2)(h + 1). Let h(x) be an

irreducible polynomial overFq of degreeh. ThenFqh = Fq[x]/(h(x)). Denote
x (mod h(x)) by α. Suppose that there exists a polynomial time algorithm to do
bounded distance decoding of Reed-Solomon code[q, g − h]q at radiusg − q. We
prove Theorem 2 by describing a polynomial time algorithm to solve the discrete
logarithm ofv(α) with baseb(α) in Fqh , whereb andv are polynomials of degree
at mosth − 1. We letS = Fq. This algorithm relies on the index calculus idea
as in Algorithm 1. It is simpler, as for any polynomialf(x) ∈ Fq[x] with degree
g − h − 1 or less, if we run the bounded decoding algorithm with input word
{(x,−f(x)/h(x))|x ∈ Fq} and distance boundn− g, the answer is never empty,
according to Theorem 3 and Lemma 2.

Algorithm 2 1. Initialize an empty set of linear equations.

2. Repeatn times

(a) Randomly select an integeri between0 andqh − 2.

(b) Computeb(α)i, and letf(x) = bi(x) (mod h(x)).
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(c) Run the bounded distance decoding algorithm to findA = P(Fq, g)
such that

b(α)i =
∏
a∈A

(α− a).

We have
i ≡

∑
a∈A

logb(α)(α− a) (mod qh − 1).

Add it to the set of linear equations.

3. For all s ∈ S do

(a) Randomly select an integeri between0 and qh − 2. Let f(x) denote
the elementb(x)i/(x− a) (mod h(x)).

(b) Run the bounded distance decoding algorithm to findA ∈ P(Fq, g)
such that

b(α)i/(α− s) =
∏
a∈A

(α− a).

We get

i ≡
∑
a∈A

logb(α)(α− a) + logb(α)(α− s) (mod qh − 1).

Add it to the set of linear equations.

4. In these equations,logb(α)(α − a), a ∈ S, are unknowns. If the system has
full rank, solve it; Otherwise go back to Step 2.

5. Apply the bounded distance decoding algorithm to find relation

v(α) =
∏
a∈A

(α− a)

Hence
logb(α) v(α) =

∑
a∈A

logb(α)(α− a).

We can essentially copy the proof of Lemma 4 to prove that we only need to
try O(n log n) manyi’s before we solve the discrete logarithm ofw(α) with base
b(α) with probability1 − 1

2n . It is very crucial here that we have Step 3, because
the system may not have the full rank if we only have Step 2. This is the case, if all
theAi’s in Step 2 come from a subset ofFq. An easy consequence of Theorem 2
is as follows. Takingε = 2 andg = 4h+ 4 in Theorem 2, we get
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Corollary 1 Let q be a prime power and leth be a positive integer satisfying
q > max((4h + 4)2, (h − 1)4). If the bounded distance decoding problem of
radius q − 4h − 4 for the Reed-Solomon code[q, 3h + 4]q can be solved in time
qO(1), the discrete logarithm problem overFqh can be solved in random timeqO(1).

5 Group size and list size

Let S be a subset ofFq of n elements. Letα be an element inFqh such that
Fq[α] = Fqh , andh is very small compared toq. What is the order of the subgroup
generated byα + S? This question has an important application in analyzing
the performance of the AKS primality testing algorithm [1]. Experimental data
suggests that the order is greater thanqh/c for some absolute constantc for all
|S| ≥ h log q. If it can be proved, the space complexity of the AKS algorithm
can be cut by a factor oflog p (p is the input prime whose primality certificate is
sought), which will make (the random variants of ) the algorithm comparable to
the primality proving algorithm used in practice. However, the best known lower
bound is(c|S|/h)h for some absolute constantc [20]. We present an interesting
duality between the group size and the list size in Hamming balls of certain radius.

Theorem 4 Let q be a prime power. Letα be an element in the extension ofFq

with degreeh. Letωα(n) be the smallest possible order for the group generated
by α + S multiplicatively, whereS ∈ Fq and |S| = n. LetARS

q (n, d, w) be the
maximum list size in the Hamming balls of radiusw in any Reed-Solomon code
with block lengthn and minimum distanced overFq. For any integerk < n − h,
we have

ARS
q (n, n− k, n− k − h)× ωα(n) ≥

(
n

k + h

)
.

Proof: Let ωα(n, S) be the order of the group generated byα + S, where
S ∈ Fq and |S| = n. Let h(x) be the minimum polynomial ofα. Consider the
mapping:

ψ : P(S, k + h) → Fq[x]/(h(x)).

The range ofψ consists of elements which can be represented as products ofk+h
distinct elements inα+S, thus it has cardinality at mostωα(n, S). For any element
in Fq[x]/(h(x)), the number of its pre-images is at mostARS

q (n, n−k, n−k−h),
according to Lemma 2. Hence

ARS
q (n, n− k, n− k − h)× ωα(n, S)

≥ |P(S, k + h)| =
(

n

k + h

)
.
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This implies the theorem. 2

Corollary 2 Let k, n be positive integers andq be a prime power. One of the
following statements must be true.

1. For any constantc1, there exists a Reed-Solomon code[n, k]q (n/3 < k <
n/2), and a Hamming ball of radiusn − ĝ(n, k, q) containing more than
c11.9n codewords.

2. The group generated byα+ S, has cardinality at leastqh/c2 for some abso-
lute constantc2, whereS ⊆ Fq and|S| = bh log qc.

To prove or disprove the first statement would solve an important open problem
about the Reed-Solomon codes. Recall that a Hamming ball with a random center
and the radiusn − ĝ(n, k, q) contains on average one codeword. To prove the
second statement would give us a primality proving algorithm much more efficient
in term of space complexity than the original AKS and its random variants, hence
making the AKS algorithm not only theoretically interesting, but also practically
important. However, at this stage we cannot figure out which one is true. What we
can prove, however, is that one of them must be true. Note that it is also possible
that both statements are true.

Proof: (of Corollary 2) Letk = bh log q/2c−h andn = bh log qc. So the rate
k/n is very close to1/2 asq gets large. Since

(
n

bh log q/2c
)

is about2h log q = qh =

qh log q/2−k, ĝ(n, k, q) = h log q/2+O(1). Assume the first statement is false, this
means that there exists a constantc3 such that for any Reed-Solomon code[n, k]q
with n/3 < k < n/2, the number of codewords in any Hamming ball of radius
n− ĝ(n, k, q) is less thanc31.9n. That is,

ARS
q (n, n− k − h, n− ĝ(n, k, q)) ≤ c31.9n

Hence the size of group generated byα+ S is at least(
n

ĝ(n,k,q)

)
c31.9n

≥ qh+O(1)

c41.9n
=
qh−n log 1.9/ log q+O(1)

c4
≥ qh/c2 .

2

6 Open problems

There is a large gap betweenn−
√
n(k − 1) andn− ĝ(n, k, q), where we do not

know list decoding for Reed-Solomon codes[n, k]q is feasible or not. In Theo-
rem 3, the conditionq ≥ g2 is still quadratic. It would be very interesting to obtain
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positive results with only linear conditionq ≥ cg for some positive constantc.
Other interesting open questions include whether there exists a reversal reduction
which maps the list or bounded distance decoding problem of Reed-Solomon code
for the parameters studied in the paper to discrete logarithm over finite fields, and
whether there exists a polynomial time quantum algorithm to solve these decoding
problems.

Acknowledgments We thank Professor Chaohua Jia for helpful discussion on
the proof of Theorem 3.
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A Proof of Lemma 1

In this section, we prove Lemma 1 by showing the following statement.

Theorem 5 There are no positive integral solutions for the inequalities(
n

g

)
> nh, (1)

g >
√
n(g − h). (2)

We first obtain a finite range forh, g andn.

Lemma 5 If (n, g, h) is a positive integral solution, thenh < 88.

Proof: Denoteg/h by α andn/h by β. From g >
√
n(g − h), we have

α >
√
β(α− 1). Henceα < β < α+ 1 + 1

α−1 .

Recall that for any positive integeri,
√

2πi(i/e)i ≤ i! ≤
√

2πi(i/e)i(1 +
1

12i−1). We have also(
n
g

)
=

(
βh
αh

)
≤ ( ββ

αα(β−α)β−α )h.

Thus ββ

αα(β−α)β−α ≥ βh, which implies

h ≤ ββ−1

αα(β − α)β−α
.

Recall more facts:

1. Forx > 0, xx takes the minimum value0.6922.. atx = e−1 = 0.36787944....

2. Forx > 0, 1 ≤ (1 + 1
x)x ≤ e = 2.7182818284...

If α ≥ 2, thenβ − α ≤ 1 + 1
α−1 ≤ 2. We have

h ≤ 1.45ββ−1

αα

≤
1.45(1 + α+ 1

α−1)(α+ 1
α−1

)

αα

≤ 1.45(1 + α+
1

α− 1
)(

1
α−1

)(1 +
1
α

+
1

α(α− 1)
)α

≤ 1.45 ∗ 4 ∗ (1 +
1

α− 1
)α−1(1 +

1
α− 1

)

≤ 1.45 ∗ 4 ∗ e ∗ 2 < 32.
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If α < 2, h ≤ 1.45ββ−1

(β−α)β−α . There are two cases. Ifβ ≤ 3, then

h ≤ 1.452 ∗ 9 < 19.

If β > 3, then

h ≤ 1.45(
β

β − α
)β−1(β − α)α−1

≤ 1.45(
β

β − 2
)β−1(1 +

1
α− 1

)α−1

≤ 1.45 ∗ (1 +
2

β − 2
)β−2(1 +

2
β − 2

) ∗ e

≤ 1.45 ∗ e2 ∗ 3 ∗ e < 88.

2

Sinceα = g
h , g > h are both positive integers, we easily have,

Corollary 3 α ≥ 88/87 andβ − α < 88.

We are ready to prove the main theorem of this section.
Proof: (of Theorem 5) We claim thatβ < 178. If α < 89, thenβ < 178. If

α ≥ 89, thenβ − α ≤ 1 + 1/88, butn− g = (β − α)h is an integer, andh ≤ 87,
soβ − α ≤ 1. This means thatn− g ≤ h, (1) can not hold.

We verify that there is no solution by exhaustively searching for the solutions
in the finite range thath < 88, n < 178 ∗ 88 = 15664 andh < g < n in a com-
puter. 2

Denote n
g−k by γ and g

g−k by δ. To prove the second part of the lemma, it

suffices to see that
(
n
g

)
=

(γ(g−k)
δ(g−k)

)
≤ cg−k

2 for some constantc2 depending only on
γ andδ.

Similarly we can show that for any constantc, the inequalities(
n

g

)
≥ nh−c (3)

g >
√
n(g − h) (4)

have only finite number of positive integral solutions.
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