On the List and Bounded Distance Decodability of
Reed-Solomon Codes

Qi Cheng Daging Warh
School of Computer Science University of California
The University of Oklahoma Irvine, CA 92697, USA
Norman, OK 73019, USA and the Institute of Mathematics
gcheng@cs.ou.edu Chinese Academy of Sciences

Beijing, P.R. China
dwan@math.uci.edu

Abstract

For an error-correcting code and a distance boundighéecoding prob-
lemis to compute all the codewords within a given distance to a received
message. Thbounded distance decodipgoblem is to find one codeword
if there is at least one codeword within the given distance, or to output the
empty set if there is not. Obviously the bounded distance decoding prob-
lem is not as hard as the list decoding problem. For a Reed-Solomon code
[n, k], & simple counting argument shows that for any intéger g < n,
there exists at least one Hamming ball of radiusg, which contains at least
(’;) /q°~* many codewords. Le}(n, k, q) be the smallest positive integer

such that(}}) /¢?~* < 1. One knows that

kE—1<gn,k,q) <v/nlk-1) <n.

For the distance bound up#to- \/n(k — 1), itis known that both the list and
bounded distance decoding can be solved efficiently. For the distance bound
betweenn — /n(k — 1) andn — g(n, k, ¢), we do not know whether the
Reed-Solomon code is list, or bounded distance decodable, nor do we know
whether there are polynomially many codewords in all balls of the radius. It
is generally believed that the answers to both questions are no.

In this paper, we prove: (1) List decoding can not be done for radius
n—g(n, k, q) or larger, unless the discrete logarithm okgs ... -« is easy.

*This work is partially supported by NSF Career Award CCR-0237845.
fPartially supported by NSF.



(2) Leth andg be positive integers satisfying> max(g?, (h — 1)>*€) and

g > (£42)(h+1) for a constant > 0. We show that the discrete logarithm
problem oveF . can be efficiently reduced by a randomized algorithm to the
bounded distance decoding problem of the Reed-Solomon [goge- A],

with radiusq — g. These results show that the decoding problems for the
Reed-Solomon code are at least as hard as the discrete logarithm problem
over certain finite fields. For the list decoding problem of Reed-Solomon
codes, although the infeasible radius that we obtain is much larger than the
radius which is known to be feasible, it is the first non-trivial bound. Our
result on the bounded distance decodability of Reed-Solomon codes is also
the first of its kind. The main tools to obtain these results are an interesting
connection between the problem of list-decoding of Reed-Solomon code and
the problem of discrete logarithm over finite fields, and a generalization of
Katz's theorem on representations of elements in an extension finite field by
products of distinct linear factors.

1 Introduction

An error-correcting cod€' over a finite alphabeX is an injective mag : ¢ —

™. When we need to transmit a message: détters over a noisy channel, we
apply the map on the message first ( i.e. encode the message ) and send its im-
age (i.e. the codeword) of letters over the channel. The Hamming distance be-
tween two sequence of letters of the same length is the number of positions where
two sequences differ. A good error-correcting code should have ada@rgmum
distanced, which is defined to be the minimum Hamming distance between two
distinct codewords i (). A received message, possibly corrupted, but with no
more than(d — 1)/2 errors, corresponds to a unique codeword and thus may be
decoded into the original message despite errors occur during the communication.

Error-correcting codes are widely used in practice. They are mathematically
interesting and intriguing. This subject has attracted the attention of theoretical
computer science community recently. Several major achievements of theoretical
computer science, notably the original proof of PCP theorem and de-randomization
techniques, rely heavily on the techniques in error-correcting codes. We refer to
the survey [19] for detalils.

For the purpose of efficient encoding and decodigs usually set to be the
finite field F, of ¢ elements, and the mapis F,-linear. Numerous error correcting
codes have been proposed, among them, the Reed-Solomon codes are particularly
important. They are deployed to transmit information from and to spaceships, and
to store information in optical media [22].

Notation: For a polynomialf (z) andaseb = {z1,- - ,z,}, we use f(x))zes



to denote the vector obtained by evaluatif{g) at the elements i, that is,

(f(2))ees = (f(z1), -+ f(2n)).

Let S be a subset df, with |S| = n. The Reed-Solomon code, k|, is the
map from(ag, a1, - - ,a,_1) € Fi to

(ag + a1z + -+ ap_12" ) 4es € Fy-

The choice ofS will not affect our results in this paper. Since any two different
polynomials with degreg—1 can share at mot— 1 points, the minimum distance
of the Reed-Solomon codesis— & + 1.

1.1 Related works

If the radius of a Hamming ball is less than half of the minimum distance, there
is at most one codeword in the Hamming ball. Finding the codeword is called
unambiguous decodindf can be efficiently solved, see [2] for a simple algorithm.

If we gradually increase the radius, there may be two or more codewords lying
in some Hamming balls. Can we efficiently enumerate all the codewords in any
Hamming ball of certain radius? This is the so called list decoding problem. The
notion was first introduced by Elias [6]. There was virtually no progress on this
problem for radius slightly larger than half of the minimum distance, until Sudan
published his influential paper [18]. His result was subsequently improved, the
current best algorithm [11] solves the list decoding problem for radius as large as
n — y/n(k —1). The work [11] sheds new light on the list decodability of Reed-
Solomon codes. To the other extreme, if the radius is greater than or equal to the
minimum distance, there are exponentially many codewords in some Hamming
balls.

The decoding problem of Reed-Solomon codes can be reformulated into the
problem ofcurve fittingor polynomial reconstruction In this problem, we are
givenn points

(z1,91)s (22,92), -+ (Tn, Yn)

in Fi. The goal is to find polynomials of degrée— 1 that pass at leagt points.

In this paper, we only consider the case when thgiven points have distinct
x-coordinates. If we allow multiple occurrences wftoordinates, the problem

is NP-hard [7, Theorem 6.1], and it is not relevant to the Reed-Solomon decod-
ing problem. Ifg > (n + k)/2, it corresponds to the unambiguous decoding of

Reed-Solomon codes. §f > /n(k — 1), the radius is less tham— /n(k — 1),

which is essentially the Johnson radius [12, 10], the problem can be solved by the



Guruswami-Sudan algorithm [11]. #f < k, it is possible that there are exponen-
tially many solutions, but finding one is very easy.

It is known that any Hamming ball of the Johnson radius contains only poly-
nomially many codewords. In this paper, we study the following question: How
large can we increase the radius before the list decoding problem or the bounded
distance decoding problem become infeasible? The question has been intensively
investigated for Reed-Solomon codes and other error-correcting codes. The case
of general non-linear codes has been solved [7], where it was proved that there
exist codes with exponentially many codewords in Hamming balls of radius a little
bigger than Johnson radius. The case for linear codes is much harder. Some par-
tial results have been obtained in [9, 8], where it was proved that there exist linear
codes with super-polynomially many codewords in Hamming balls of radius close
to Johnson radius. However, none of them apply to Reed-Solomon codes. No neg-
ative result is known about the list decoding of Reed-Solomon codes, except for a
simple combinatorial bound given by Justesen and Hoholdt [13], which states that
for any positive integey < n, there exists at least one Hamming ball of radius
n — g, which contains at Ieas(t;‘)/qg—k many codewords. This bound matches
the intuition well. Consider an imaginary algorithm as follows: randomly select
points from then input points, and use polynomial interpolation to get a polyno-
mial of degree at mosi — 1 which passes thesgepoints. Then with probability
1/¢q97%, for a random word ik, the resulting polynomial has degree- 1. The
sample space has si@). Thus heuristically, the number of codewords in Ham-

ming balls of radiug: — g is at Ieast(Z)/qg—"? on the average. In the same paper,

Justesen and Hoholdt also gave an upper bound for the radius of the Hamming balls
containing a constant or fewer number of codewords.

1.2 Ourresults

If we gradually increase, starting fromk and going toward, then(Z)/qg—’“ will

fall below 1 at some point. Howevey, is still very far away from\/n(k — 1).

Let g(n, k, q) be the smallest positive integer such tl(@)/qg*’g is no great than

1. Roughly speaking, a Hamming ball with a random center and the radius
g(n, k,q) contains on average about one codeword. The following lemma shows

that there is a gap betweé(n, k, ¢) and/n(k — 1).

Lemma 1 For positive integerg < g < n, if g > V/nk, thengd=* > n9=+ > (7)-
This implies thag(n, k, q¢) < Vnk.

For afixed raté: /n, the radius.—g(n, k, ¢) has relative radius approaching the
relative distance as approaches infinity. However it is not known whether there
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exist Reed-Solomon codes such that some Hamming balls of radiugn, k, q)
contain exponential number of codewords. Then how hard is it to do list decoding
for the radius, — g(n, k, q)?

Instead of trying to find a Hamming ball with a large number of codewords
of radiusn — g(n, k, ¢), we take another approach. We show that even if there is
only a small number of codewords in every Hamming ball of this radius, the list
decoding problem is still infeasible, by relating this question to discrete logarithm
over finite fields. The discrete logarithm problem in finite fi€lgh, is to compute
an integeke such that = +¢, given a generatoy of a subgroup oF;,. andt in the
subgroup. The general purpose algorithms to solve the discrete logarithm problem
are the number field sieve and the function field sieve (for a survey see [16]). They
have a conjectured subexponential time complexity

exp(c(log ¢"™)*/3(log log ¢™)*/?)

for some constant, wheng is small, orm is small.

We prove that if the list decoding of the, k|, Reed-Solomon code is feasible
for radiusn — g(n, k, ¢), then the discrete logarithm ovef .k« is €asy. In
other words, we prove that the list decoding is not feasible for radiug(n, k, q)
or larger, assuming that the discrete logarithm @¥g......-« is hard. Note that it
does not rule out the possibility that there are only polynomially many codewords
in all Hamming balls of radius — g(n, k, ¢), even assuming the intractability of
the discrete logarithm oveé ;. x.q)—«-

Theorem 1 If there exists an algorithm solving the list decoding problem of radius
n—g(n, k, q) for the Reed-Solomon cofle k], in random time;°(), then discrete
logarithm over the finite fielé ;(..x..—+ can be computed in random tim€).

Let us consider a numerical example. Set 1000, £k = 401, ¢ = 1201.

The unambiguous decoding algorithm can correct up(to— k£ + 1)/2| = 300
errors. The Guruswami-Sudan algorithm can corfect \/n(k —1)] = [ 1000 —
v/1000 % 400] = 368 errors. Can we list decode up to— g(n, k,q) = 1000 —

499 = 501 errors in reasonable time? The theorem shows that if we can, then the
discrete logarithm ovef 54,95 can be solved efficiently, which is widely regarded
as unlikely at present.

When the list decoding problem is hard for certain radius, or a Hamming ball
contains too many codewords for us to enumerate all of them, we can ask for an
efficientbounded distance decodimdgorithm, which only needs to output one of
the codewords in the ball, or output the empty set in case that the ball does not
contain any codeword. However, we prove that the bounded distance decoding is
hard as well.



Theorem 2 Let ¢ be a prime power and be a positive integer satisfying >
max(g?, (h — 1)?*¢) andg > (2 4 2)(h + 1) for any constant > 0. If the
bounded distance decoding problem of radius ¢ for the Reed-Solomon code
l[¢,9 — h]q can be solved in random timg’(1), the discrete logarithm problem
overF,. can be solved in random tingé’(!).

For g, g, h satisfying the conditions in the theorem,

q _ _
(2) (@/9)? @@ (@D on o ange
qg—(g— ) q g9 g9

Hence there is a Hamming ball of radigs— g containing exponentially many
codewords. It is infeasible to do list decoding under these parameters. This result
has a drawback that it can only be applied to the low rate codes, ginde< g <
NGE

Itis generally believed that the list decoding problem and the bounded distance
decoding for Reed-Solomon codes are computationally hard if the number of er-
rors is greater than — \/n(k — 1) and less thamn — k. This problem is even used
as a hard problem to build public key cryptosystems and pseudo-random genera-
tors [15]. A similar problem, noisy polynomial interpolation [3], was proved to be
vulnerable to the attack of lattice reduction techniques, hence is easier than origi-
nally thought. This raises concerns on the hardness of polynomial reconstruction
problem. Our results confirm the belief that polynomial reconstruction problem is
hard for certain parameters, under a well-studied hardness assumption in number
theory and hence provide a guideline for selecting parameters for many protocols
based on the problem.

1.3 Techniques

We rely on the idea of index calculus to prove these two theorems. Our application
of index calculus however is different from its usual applications, in that we use it
to prove a hardness result (a computational lower bound), rather than a computa-
tional upper bound. We naturally come across the following question in the proofs:
In afinite fieldF », for anya such thaf » = Fy[a], canF,+a generate the multi-
plicative group(F,»)*? This interesting problem has a lot of applications in graph
theory, and it has been studied by several number theorists. Chung [5] proved that
if ¢ > (h—1)2, then(F )" is generated b, +a. Wan [21] showed a negative re-

sult that if¢" — 1 has a divisorl > 1 andh > 2(qlog, d+log,(q¢+1)), then(F »)*

is not generated blf, + o for somea. Katz [14] applied the Lang-Weil method,

and showed that for everly > 2 there exists a constatt(h) such that for any

finite field F, with ¢ > B(h), any element ifF )" can be written as a product of
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exactlyn = h + 2 distinct elements frorfr, + «. By a simple counting argument,
B(h) has to be an exponential function/in In this paper, we use Weil’s character
sum estimate and a simple sieving to prove that # max(g?, (h — 1)?*¢) and

g > (£ 4 2)(h + 1) for any constant > 0, then any element iF,»)* can be
written as a product of exactly distinct elements fronf, + «. In comparison to
Katz's theorem, we use a biggerand manage to decreasgh) to a polynomial
function inh.

This paper is organized as follows. In Section 2, we show the connection be-
tween the decoding problem of Reed-Solomon codes and the discrete logarithm
problem over finite fields. In Section 3, we present the proof of Theorem 1. In
Section 4, we present the proof of Theorem 2. In Section 5, we show an inter-
esting duality between the size of a group generated by linear factors, and the list
size in Hamming balls of Reed-Solomon codes. In Appendix, Section A, we prove
Lemma 1.

2 The decoding problem and the discrete logarithm

Let ¢ be a prime power and I, be the finite field withy elements. LetS be a
subset of, of n elements. For a positive integer< n, denote

P(S,g9) = {A|A C S, |A] = g}.
Clearly, the seP(S, g) has(g) elements. For anyl € P(S, g), let
Pa(z) = [[(= - a).
a€A

This is a monic polynomial of degregewhich splits ovelF, as a product of distinct
linear factors.

Letl < h < g be integers. Lek(x) be an irreducible monic polynomial over
F, of degreeh. Define a map

¥ P(S,g) = Fyla]/(h(x))

by
Y(A) = Pa(z) (mod h(z)).

For anyf(z) in Fy[z]/(h(z)) with degree at most—1, if v»—1(f(x)) is not empty,
then there exists at least one monic polynomial) € F,[x] of degreey — h and
oneA € P(S,n) such that

f(@) + t(x)h(z) = Pa(z).
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Foranya € A, Py(a) = 0andt(a) = —f(a)/h(a). Recall that(x) is irreducible
overF, henceh(a) # 0 for all a € A. Sincef(z) + t(z)h(x) has degreg, there
are exactlyy elements inS which are the roots of (z) + t(z)h(x) = 0, the curve
y = t(x) passes exactly points in the following set of, points:

{(a,=f(a)/h(a))]a € S}.

For any polynomialf € F,[z] of degree at most —1, let T}, be the set of monic
polynomialt(z) € F,[x] of degreeg — h such thatf (z) + t(x)h(z) = Pa(z) for
someA € P(S, g). LetCy(,) be the set of codewords with distance exaatly g
to the received wor@— f(a)/h(a) — a9~ "),es in Reed-Solomon code, g — h),.
It is then easy to prove

Lemma 2 There is a one-to-one correspondence between elemefits gfand
C}(z), by sending any(z) € T}, to (t(a) — a9™")qes.

Remark 1 According to the pigeonhole principle, there must exist a polynomial

A~

f(z) such that

s PSSl ()
VIO ] e

This provides another proof that there is a Hamming ball of radius g with
many codewords.

(5)

qT

Suppose that we knowi(x) andh(z), but nott(x), can we still findA? For-
mally we are asking the following question:

Input: A prime powerg, an irreducible polynomiak(x) overF, of degreeh,
a polynomialf (x) € F,[z], a positive integey and a set5 C F,,.

Problem I: A list of all the subsets! € P(S, g) such that

f(x) = Pa(z) (mod h(x)).
Problem II: One ofA € P(5S, g) such that
f(x) = Pa(z) (mod h(x)).

Lemma 3 Problem | can be reduced in polynomial time to the list decoding prob-
lem of Reed-Solomon cofle g — 1], at radiusn — g. Problem Il can be reduced in
polynomial time to the bounded distance decoding problem of Reed-Solomon code
[n,g — hl], atradiusn — g.



Proof: The vector(—f(a)/h(a) — a9~").cs can be calculated from the input.
Using list decoding algorithm or bounded distance decoding algorithm, we can
computet(z) of degree at most — h — 1 such that(a) = —f(a)/h(a) — a9~" at
g manya’'s. We find A by factoringf () + (t(x) + 29~ ")h(z). O

If A can be found, then in the fiel,[x]/(h(z)), f(z) can be represented as
a product of elements from a small set. It is callesh@oothrepresentation with
factor basesr — S in computational number theory. The capability of finding
smooth representation constitutes a powerful attack against hard number theory
problems like integer factorization and the discrete logarithm over finite fields.
The lemma implies that decoding Reed-Solomon codes provides a way to find a
smooth representation of any field element. Thus naturally an efficient decoding
algorithm produces an attack for the discrete logarithm over finite fields. This idea
first appeared in [4], and it provides a general framework for the following proofs.

3 The proof of Theorem 1

Given a Reed-Solomon code, k], leth = §(n, k, q¢) — k. Recall thatj(n, k, q)

is the smallest positive integer such tt@) /q97% is no great tharl, andh is
the degree of an irreducible polynomialz). We show that there is an efficient
algorithm to solve the discrete logarithm oy, = Fy[z]/(h(z)) if there is an
efficient list decoding algorithm for the Reed-Solomon cdelgk], with radius
n—g(n,k,q) =n—k—h.

Leta =z (mod h(z)). Suppose that we are given the bage) and we need
to find out the discrete logarithm ef «) with respect to the base, wherandv
are polynomials oveff, of degree at most — 1. Select anys C F, |S| = n. We
use the index calculus algorithm with factor bages- a).cs.

Algorithm 1 1. Initialize an empty set of linear equations.
2. Repeat: times
(a) Randomly select an integébetweerd and¢” — 2. Computef (z) =
b(z)" (mod h(x)).
(b) Apply the list decoding algorithm to find the listédfe P (S, g(n, k, q))

such thatf(xz) = Pa(z) (mod h(x)). If the list is empty, go back to
2a.

(c) Otherwise we haveelations

f)=Tla-a=+=I[a-a

a€A; a€A;



for someA;, As,--- , A; € P(S,g(n,k,q)), wherel is the list size.
From the relations, we obtain linear equations mad — 1):

i= Z logyay (@ —a) =+ = Z logy(a) (@ — a).
acAq CLEAZ
Add them to the set of linear equations.

3. Foralls € Sdo
(a) Randomly select an integébetweer) and¢” — 2. Computef (z) =
b(z)!/(x —a) (mod h(z)).

(b) Apply the list decoding algorithm to find the listéfe P (S, g(n, k, q))

such thatf(xz) = Pa(z) (mod h(x)). If the list is empty, go back to
3a.

(c) Otherwise we haveelations

)= T[te-a=-=[a-a)

CLEAl aEAl

for someA, Ay, -+, A; € P(S,g(n,k,q)), wherel is the list size.
From the relations, we obtain linear equations mad — 1):

— Z logy(a) (@ — a) +logyqy (@ —s) = -+
a€A;

= ) logyay(a — a) + logy (@ — s).
a€A;

Add them to the set of linear equations.

4. In these equationsogy ) ( — a), a € S, are unknowns. If the system has
full rank, solve it; Otherwise go back to Step 2.

5. Randomly select an integérbetween0 and ¢" — 2. Computef(z) =
b(z)iv(x) (mod h(x)).

6. Apply the list decoding algorithm to find a list df € P(.5, ¢g) such that
f(x) = Pa(z) (mod h(x)). If the list is empty, go back to 5.

7. Otherwise we have a relation



Hence
i+ logya) v Zlogb a—a)
acA

we can solvéog;,,) v(a) immediately.

Now we analyze the time complexity of the algorithm. An efficient list decod-
ing algorithm implies:

1. There are only polynomially many codewords in any Hamming ball of radius
n — g(n, k, q), which along with Lemma 2 implies thap~!(f)| < ¢ for
any f € F,» and a constant Hence

J §(n,k,q)—k h
[Y(P(S,9(n, k,q)))| > (g(nq,;:@) >4 c ZT'

Thus in Step 2b, Step 3b and Step 6, sifi¢e) is a random element iﬁ;h,
the list decoding algorithm outputs nonempty list with probability bigger

thanl/q¢. Note that% % <1

2. And they can be found in polynomial time. Each step will take polynomial
time. Thus all steps in the algorithm runs in polynomial time.

So we only need to show

Lemma 4 The linear system can yield a unique solution with high probability after
polynomially number of iterations of the main loop (from Step 2 to Step 4).

Informally sincei is picked randomly, the probability that a new equation is
linearly independent to previous ones is very high at the beginning of the algorithm.
It would not take long time before we have an independent linear system. Solving
the system of equations giveslag,, (o« —a) foralla € S.

Proof: (of Lemma 4) The linear system is defined in the ribg(¢" — 1),
which is usually not a field. We may proceed with the linear system solver. If
the algorithm encounters a zero-divisor in the ring, we can fagtor 1. We
then apply the linear system solver to each modulus. We get the solution for the
original system using the Chinese Remainder Theorem. In the case that a modulus
is a prime power, we can solve the linear system modulo the prime first, and use
Hensel lifting to solve the system modulo the prime power. Sifce 1 has at
mosth log ¢ many distinct prime factors, this issue will slow the algorithm down
only by a polynomial factor. Now we may assume that the linear system is defined
over a finite field.
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Let w = [2logn] 4+ 3. Let T be the set of binary vectors with length
and weightg. If the iteration of the main loop is repeatadtimes, we have se-
lected in Step 2aw many integerss, io, - - - , inw, and in Step 3aw many in-
tegersinwi1, - - ,i2nw, and obtained relations fdfi(a) (1 < j < nw ) and
bi(a)/(a —a) (nw+1 < j < 2nwanda € S). This amounts to selecting at
least2nw vectors fromT" independently. Andlogy (o — s)[s € S} forms a
basis for the linear system. According to the following proposition, proved in [17],
we getn independent equations with probability more tHan % Note that it
is not required that the vectors are selected uniformly. This finishes the proof of
Theorem 1. 0

Proposition 1 LetV be a vector space over a fiehkdwith dim V' = n. LetT be a

finite set of vectors iy and letey, - - - , e, be a basis of/. Letw = [2logn] + 3.
Suppose we chooSw vectorsuy, ug, -« , Unw, V1, V2, - -+ , Uny iNAdependently
fromT. LetV’ be the subspace &f spanned byiy, us, - - - , un, and the vectors

ej + V(j—1ywsi for j = 1,2,--- ;nandi = 1,--- ,w. Then with probability at
leastl — 5-, we have that’ = V.

4 The proof of Theorem 2
We first prove the following number theoretic result.

Theorem 3 Let h be a positive integer. Assunge> max(g?, (h — 1)?7¢) and
g > (2 +2)(h+1) for a constant > 0. Then for anyx such thatF,[a] = Fons
every element iﬁzh can be written as a product of exacgydistinct factors from

{a+ala € Fy}.

Proof: We follow the method used in [21]. Fix amsuch that~,[a] = F ..
Forp € F;h, let NV, (3) denote the number of solutions of the equation

g

ﬁ = H(Oé + ai), a; € Fq,

=1

where they;’s are distinct. Permutations af’s are counted as different solutions.
We need to show that the numh¥},(3) is always positive ify > max(g?, (h —
1)*t) andg > (£ +2)(h + 1).

Let G be the character group of the multiplicative grdqp. That is,G is the
set of group homomorphisms froﬁzh to C*. The groupG is a cyclic group of

12



orderg™ — 1 and thus

g h _ itg=1[.(a+ a;),
ZX<H<a+az->/m—{q botp =1l a)

xeG =1 0, otherwise.

From this, we deduce

M@= X (Lo +a).

aZEFq, a; distinct X€EG

Since the second summand is always non-negative, a simple inclusion-exclusion
sieving implies that

(DN DD DI

aieFg1<i<g  1501<i2<9 ¢;eFg,0;, =a;,

S @)X (e +a)).
=1

x€G

For non-trivial charactey, one has the well-known Weil estimate [21]

IS xla+a) < (h-1)vq

acF,

and thus

g
Y [Ixte+a)) < (h—1)772

aieFg1<i<gi=1

If x? # 1, then for fixedi; < iy, Weil's estimate implies that
Y TDxaal < -1 g2 < (- 1ysgel.
aielzq,allfcbl2 1=1
If x? =1 buty # 1, then for fixedi; < i, Weil's estimate implies that
g
Y TIxte+a) <alh—1)72q922 < (h = 1)792.
aiGFq,ail =ai, i=1

Separating the trivial character from the above lower estimat&Vigr), we de-
duce that

w2 T (- e
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In order for N, (3) > 0, it suffices to have the inequality

(= (G > e (§)n -1y

This inequality is clearly satisfied if both > 2(3) +1 = g(¢9 — 1) + 1 and
q9/>~1=" > (h—1)9. These two inequalities are satisfied if we tgke max(g?, (h—
1)>t¢) andg > (£ + 2)(h + 1). The theorem is proved. O

Remark 2 As we should see immediately, the expres$igfs)/g! is the num-
ber of codewords in the Hamming ball with radius— ¢g and with center at
(—f(a)/h(a) — ag_h)aqu whereh(z) is the minimum polynomial ef overF,
and f(x) is the polynomial of degree at mdst- 1 representing3. Adjusting the
parameters will give us an exponential lower boundAQi(5)/g!. For example, if
g >2(3)+2andg > (£ +2)(h+1), the same proof shows that,(8) > g9 "~*

and thus -
g—h—
Ng(ﬁ) > q
g = 4
which is exponential for certain parametersg and h.

Let ¢ > max(g% (h — 1)?*) andg > (2 + 2)(h + 1). Leth(z) be an
irreducible polynomial oveF, of degreeh. ThenF . = F,[z]/(h(x)). Denote
x (mod h(z)) by a. Suppose that there exists a polynomial time algorithm to do
bounded distance decoding of Reed-Solomon ¢gde— h, at radiusg — ¢. We
prove Theorem 2 by describing a polynomial time algorithm to solve the discrete
logarithm ofv(a) with baseb(a) in F», whereb andv are polynomials of degree
at mosth — 1. We letS = F,. This algorithm relies on the index calculus idea
as in Algorithm 1. It is simpler, as for any polynomif{z) € F,[x] with degree
g — h — 1 or less, if we run the bounded decoding algorithm with input word
{(z,—f(x)/h(z))|z € F;} and distance bound — g, the answer is never empty,
according to Theorem 3 and Lemma 2.

Algorithm 2 1. Initialize an empty set of linear equations.
2. Repeat times

(a) Randomly select an integebetweer) andg" — 2.
(b) Computeb(a)?, and letf(x) = bi(z) (mod h(zx)).
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(c) Run the bounded distance decoding algorithm to fine= P(F,, g)

such that '
b(a)' = H(a —a).
acA

We have

i = Z logy(a) (@ —a)  (mod " —1).
acA

Add it to the set of linear equations.

3. Foralls € Sdo

(@) Randomly select an integebetweerp and¢” — 2. Let f(x) denote
the element(z)?/(z — a) (mod h(x)).

(b) Run the bounded distance decoding algorithm to find P(F,, g)

such that A
b(a)'/(a—s) = [[(a—a).
acA
We get

i = Z logy(a) (@ — a) +logyq)(a — 5)  (mod @ —1).
acA

Add it to the set of linear equations.

4. In these equationspg, ) ( — a), a € S, are unknowns. If the system has
full rank, solve it; Otherwise go back to Step 2.

5. Apply the bounded distance decoding algorithm to find relation

v(a) = H(a —a)

a€A

Hence

108p(a) V(@) = Y _ logyyy(a — a).
acA

We can essentially copy the proof of Lemma 4 to prove that we only need to
try O(nlogn) manyi's before we solve the discrete logarithmwof«) with base
b(«) with probability 1 — % It is very crucial here that we have Step 3, because
the system may not have the full rank if we only have Step 2. This is the case, if all
the A;'s in Step 2 come from a subsetBf. An easy consequence of Theorem 2
is as follows. Taking = 2 andg = 4h + 4 in Theorem 2, we get
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Corollary 1 Let ¢ be a prime power and lek be a positive integer satisfying
q > max((4h + 4)%,(h — 1)%). If the bounded distance decoding problem of
radius ¢ — 4h — 4 for the Reed-Solomon codlg 3/ + 4], can be solved in time
¢°W, the discrete logarithm problem ovEf, can be solved in random ting& ().

5 Group size and list size

Let S be a subset oF, of n elements. Letx be an element irF » such that
Fyla] = F,n, andh is very small compared t@. What is the order of the subgroup
generated byy + S? This question has an important application in analyzing
the performance of the AKS primality testing algorithm [1]. Experimental data
suggests that the order is greater tl@ff for some absolute constaatfor all

|S| > hloggq. If it can be proved, the space complexity of the AKS algorithm
can be cut by a factor dbg p (p is the input prime whose primality certificate is
sought), which will make (the random variants of ) the algorithm comparable to
the primality proving algorithm used in practice. However, the best known lower
bound is(c|S|/h)" for some absolute constan{20]. We present an interesting
duality between the group size and the list size in Hamming balls of certain radius.

Theorem 4 Let g be a prime power. Let be an element in the extensionfof
with degreeh. Letw,(n) be the smallest possible order for the group generated
by o + S multiplicatively, whereS € F, and |S| = n. Let Afs(n, d,w) be the
maximum list size in the Hamming balls of radiusn any Reed-Solomon code
with block length, and minimum distance overF,. For any integetk < n — h,
we have
ABS(nyn = kyn — k — h) X wa(n) > <kﬁh>

Proof: Let w,(n,S) be the order of the group generated dy+ S, where
S € Fyand|S| = n. Leth(x) be the minimum polynomial of. Consider the
mapping:

Y P(S,k+ h) — Fylz]/(h(x)).

The range of) consists of elements which can be represented as products bf
distinct elements inv+ S, thus it has cardinality at most, (n, S). For any element
in Fy[z]/(h(x)), the number of its pre-images is at megfs(n, n—k,n—k—nh),
according to Lemma 2. Hence

RS
A7 (n,n —k,n—k —h) xwa(n,S)

> psaanl=(,1,):
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This implies the theorem. O

Corollary 2 Let k,n be positive integers ang be a prime power. One of the
following statements must be true.

1. For any constant;, there exists a Reed-Solomon cddek], (n/3 < k <
n/2), and a Hamming ball of radius — g(n, k, ¢) containing more than
¢11.9™ codewords.

2. The group generated lay+ S, has cardinality at leas”/*> for some abso-
lute constant;, whereS C F, and|S| = |hlogg].

To prove or disprove the first statement would solve an important open problem
about the Reed-Solomon codes. Recall that a Hamming ball with a random center
and the radius. — g(n, k, q) contains on average one codeword. To prove the
second statement would give us a primality proving algorithm much more efficient
in term of space complexity than the original AKS and its random variants, hence
making the AKS algorithm not only theoretically interesting, but also practically
important. However, at this stage we cannot figure out which one is true. What we
can prove, however, is that one of them must be true. Note that it is also possible
that both statements are true.

Proof: (of Corollary 2) Letk = |hlogq/2] —h andn = |hlogq|. So the rate
k/n is very close td /2 asq gets large. Sincg, . ) is abou2" 84 = ¢" =
q"o8 42—k G(n k,q) = hlogq/2+ O(1). Assume the first statement is false, this
means that there exists a constansuch that for any Reed-Solomon cddek],
with n/3 < k < n/2, the number of codewords in any Hamming ball of radius
n— g(n, k, q) is less thare31.9™. That s,

Afs(n, n—k—nhn—gn,kq)<c3l.9"
Hence the size of group generateddy- S is at least

qh+O(1) h—nlog1.9/log ¢g+O(1)

(o)) g

> — 2 qh/CQ.
c31.97 cy1.97 cq

6 Open problems

There is a large gap between- \/n(k — 1) andn — g(n, k, ¢), where we do not
know list decoding for Reed-Solomon codesk], is feasible or not. In Theo-
rem 3, the conditio > ¢? is still quadratic. It would be very interesting to obtain

17



positive results with only linear conditiop > cg for some positive constarat

Other interesting open questions include whether there exists a reversal reduction
which maps the list or bounded distance decoding problem of Reed-Solomon code
for the parameters studied in the paper to discrete logarithm over finite fields, and
whether there exists a polynomial time quantum algorithm to solve these decoding
problems.

Acknowledgments We thank Professor Chaohua Jia for helpful discussion on
the proof of Theorem 3.
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A Proof of Lemmal
In this section, we prove Lemma 1 by showing the following statement.

Theorem 5 There are no positive integral solutions for the inequalities

() - v

g > Vnlg—h). (2)
We first obtain a finite range fdr, g andn.
Lemma5 If (n, g, h) is a positive integral solution, thel < 88.

Proof: Denoteg/h by « andn/h by 3. Fromg > /n(g — h), we have
a>/Bla—1). Hencea < B < a+1+ L.

Recall that for any positive integeér v/2ri(i/e)’ < i! < 2mi(i/e)’(1 +
5-—)- We have also

n h 6
(g) = (gh) < (aa(ﬁfa)ﬁfo‘ )h'
8 . . .
Thusaa(ﬁfw > h, which implies
Bl
h ——— .
" ar(B -y

Recall more facts:

1. Forz > 0, z* takes the minimum valug6922.. atx = e~ ! = 0.36787944....

2. Forz > 0,1 < (1+ 1) <e=27182818284...

If > 2,thend —a <1+ - < 2. We have

a—1 —
1.458°-1
aa
+317)
145(1 + a + i)t
aa

14501 +a+ —y@Da L4
) o+ ——) e -4 ——
a—1 a ala—1)

)

IN

IA

)Oc
1
a—1

IN

145 4% (1+ —)*"1(1
* *(+a_1) (1+

145 %4 xex2 < 32.

IN
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If a<2,h< % There are two cases. # < 3, then

h <1.45% %9 < 19.
If 3> 3, then

ho< 1.45(%)ﬂ—1(5 — )t

ﬁ<_
1.45(&)5—1(1 +

1.45% (1 +

1
a—1

773 2)5*2(1 +

145 % e? %3 xe < 88.

IN

)a—l

P
52

IN

)xe

IN

Sincea = £, g > h are both positive integers, we easily have,
Corollary 3 « > 88/87andj — « < 88.

We are ready to prove the main theorem of this section.

Proof: (of Theorem 5) We claim that < 178. If o < 89, theng < 178. If
a > 89,theng —a <1+ 1/88, butn — g = (8 — a)his an integer, and < 87,
S0 — a < 1. This means that — g < h, (1) can not hold.

We verify that there is no solution by exhaustively searching for the solutions
in the finite range thak < 88,n < 178 % 88 = 15664 andh < g < n in a com-
puter. O

Denoteg_ik by ~ andg%k by 6. To prove the second part of the lemma, it

. —k —k .
suffices to see that)) = (gg_ki) < ¢§" for some constant, depending only on
~ andé.

Similarly we can show that for any constanthe inequalities

() >

g > n(g —h) (4)

have only finite number of positive integral solutions.
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