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Abstract. It has been suggested that a major obstacle in finding an
index calculus attack on the elliptic curve discrete logarithm problem
lies in the difficulty of lifting points from elliptic curves over finite fields
to global fields. We explore the possibility of circumventing the problem
of explicitly lifting points by investigating whether partial information
about the lifting would be sufficient for solving the elliptic curve dis-
crete logarithm problem. Along this line, we show that the elliptic curve
discrete logarithm problem can be reduced to three partial lifting prob-
lems. Our reductions run in random polynomial time assuming certain
conjectures, which are based on some well-known and widely accepted
conjectures concerning the expected ranks of elliptic curves over the ra-
tionals. Should the elliptic curve discrete logarithm problem admit no
subexponential time attack, then our results suggest that gaining partial
information about lifting would be at least as hard.

Keyword: Elliptic curve cryptosystem, discrete logarithm, partial lift-
ing.

1 Introduction

The discrete logarithm problem over elliptic curves is a natural analog of the
discrete logarithm problem over finite fields. It is the basis of elliptic curve cryp-
tosystems proposed independently by Koblitz and Miller [11, 17]. Steady progress
has been made in constructing better and more sophisticated, albeit subexpo-
nential time algorithms for the discrete logarithm problem over finite fields. In
contrast, no subexponential attacks have been found for the elliptic curve dis-
crete logarithm problem except in very special cases [14, 27, 18, 20]. See also [4,
5, 15, 16]. Consequently elliptic curve cryptosystems have attracted considerable
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attention, especially in cryptographic applications where key length needs to be
kept to the minimal.

Most subexponential algorithms for discrete logarithms over finite fields have
been based on the index calculus method (see [19] for a survey). This method
involves lifting elements from a finite field to a global field to take advantage of
the arithmetic structures in the global field. The lifting of elements is simple and
straightforward. For example in the case of a finite prime field Fp, an element
a mod p ∈ Fp with 0 < a < p is simply lifted to a ∈ Z. However extending this
method to the elliptic curve discrete logarithm problem seems to be difficult.
It has been suggested [17] that a major obstacle in finding an index calculus
attack on the elliptic curve discrete logarithm problem lies in the difficulty of
lifting points from elliptic curves over finite fields to global fields. The reason
behind such difficulty is that elliptic curves over Q usually have very small rank
– at least heuristically and practically speaking. As a result rational points with
reasonably bounded heights are severely limited in number, rendering the lifting
problem difficult. (See the next section for an illustration, and [8, 9, 25] for more
in-depth discussion).

In this paper we explore the possibility of circumventing the problem of
explicitly lifting points by investigating whether partial information about the
lifting would be sufficient for solving the elliptic curve discrete logarithm prob-
lem. We show that the elliptic curve discrete logarithm problem can be reduced
to three partial lifting problems. These partial lifting problems have the same
basic setup as the explicit lifting problem, namely, an elliptic curve E/Fp, a
nonzero point S ∈ E(Fp), an elliptic curve E/Q having E as its good reduction
modulo p, and X ∈ E(Q) which reduces to S modulo p. Moreover we assume
that E(Fp) is cyclic of prime order, so that every point in E(Fp) is liftable to
E(Q). For the first partial lifting problem, we are given T ∈ E(Fp), a height
bound h ∈ Q, and the goal is to decide whether T can be lifted to a point in
E(Q) of height bounded by h. We call this problem the height decision problem.
Note that if the height bound h is around p, it may take exponential time just
to write down a lift of T . However in the height decision problem all that we ask
is whether such a lift exists or not. For the second partial lifting problem, we are
given T ∈ E(Fp) and a prime r, and the goal is to find the reduction modulo r of
any lift of T to E(Q). We call this problem the shifting prime problem. Note that
a lift of T can again be large, but its reduction modulo r has length O(log r).
For the third partial lifting problem, we are given T ∈ E(Fp), and the goal is to
construct a straight-line program of any lift of T to E(Q). We call this problem
the straight-line description problem. (As will be observed in the next section
that a small straight-line description of a lift of T usually does exist.)

Our reductions run in random polynomial time assuming a conjecture which
in turn is based on some widely accepted conjectures concerning the expected
ranks of elliptic curves over the rationals. They are stated explicitly in the next
section. Our results lead to the following open question: can partial information
on lifting as described above be extracted in subexponential time? An affirmative
answer will lead to a subexponential algorithm for the the elliptic curve discrete



logarithm problem. On the other hand, should the elliptic curve discrete loga-
rithm problem admit no subexponential time attack, then our results suggest
that gaining partial information about lifting would be at least as hard.

2 Statements of results

An elliptic curve is a smooth cubic algebraic curve. Let k be a field. An elliptic
curve over k can be given as an equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ k, 1 ≤ i ≤ 6. Denote by E(k) the set of points (x, y) ∈ k2 that satisfy
this equation, along with a point O at infinity. If the characteristic of k is neither
2 nor 3, we may assume that the elliptic curve is given by an equation of the
form

y2 = x3 + ax+ b, a, b ∈ k

The discriminant of this curve is defined as the discriminant of polynomial x3 +
ax+ b, which is −4a3−27b2. The curve is smooth iff its discriminant is not zero.

The set E(k) forms an additive group. It is isomorphic to T × Zr, where T
is the finite torsion group, and r is the rank of the group. A lot of theoretical
and experimental evidence shows that most elliptic curves would have as small a
rank as allowed by the sign of their functional equations [1, 2, 21]. In particular
most elliptic curves over the rationals with a rational point of infinite order are
expected to be either of rank 1 or 2. Parts of our proofs are based on such a
heuristic assumption. An explicit statement of the assumption sufficient for our
purposes is given below.

Conjecture 1. Let E : y2 = x3 +ax+ b be an elliptic curve over Z/(n). Let P be
a point on the E all of whose coordinates are in (Z/(n))∗ and let X = (x0, y0)
be the natural lift of P to Z. Consider the family of curves over Z

F(E,X) = {E(α, β)||α|, |β| ≤ 3n3, E passes X and E reduces to E modulo n}

where E(α, β) is defined by the equation y2 = x3 +αx+ β. Then for sufficiently
large n, a random curve in the family has rank 1 with probability greater than
some constant.

In light of the general heuristic assumption [1, 2, 21], it would be actually
reasonable to expect that a random curve in F(E,X) has rank 1 with probability
around 1/2, and rank 2 with probability around 1/2.

How do we sample a random curve in the family? To do this, we choose a
random integer i < n and set α = a+ in, then set β = y2

0−x3
0−αx0. It is easy to

see that E passes through X. Moreover one can show that a substantial fraction
of integers i satisfies gcd(α, y2

0 − x3
0) = 1 and gcd(α, β) = 1 if a, b ∈ (Z/(n))∗.

Let S, T ∈ E(k) be two points on the curve. The discrete logarithm of T
with base S is an integer m such that T = mS, if such an m exists. Now to



illustrate the difficulty of lifting points, let us consider an elliptic curve E/Fp

with a nonzero point S ∈ E(Fp) which generates a cyclic group < S > of large
prime order r. It is not difficult to construct an elliptic curve E/Q with E as
its reduction at p, and X ∈ E(Q) which reduces to S modulo p. In practical
terms E(Q) would most likely be of rank one or two. For simplicity suppose it
is of rank one. Now suppose we want to lift a point T in the group < S > to
a point in E(Q). Suppose E(Q) has trivial torsion part and, to our advantage,
X is a generator of E(Q). Then for m < r, mX is the lift of T = mS of
minimum possible canonical height. However ĥ(mX) = m2ĥ(X), which is Ω(p2)
in the worst case. Here ĥ denotes the canonical height function. Therefore it is
infeasible even to write down the coordinates of the lifting points of T .

Y = m X ∈ E(Q)
⇑ ⇑
T = m S ∈ E(Fp)

On the other hand, though the coordinates of Y are huge they actually
have very short straight-line program (see definition in Section 5) essentially
because multiplication of a point by m can be performed in O(logm) additions
of points. So instead of trying to lift points explicitly we consider three partial
lifting problems whose formal definitions are given below together with theorems
concerning their relation to the elliptic curve discrete logarithm problem.

The height decision problem:
Input: p, E, E , T and h where p is a prime, E/Fp is an elliptic curve such

that E(Fp) is cyclic of prime order, E/Q is an elliptic curve having E as its good
reduction modulo p, T ∈ E(Fp) and h ∈ Q (a height bound).

Output: “Yes” if T can be lifted to a point in E(Q) of (naive) height bounded
by h, and “no” otherwise.

Theorem 1. Assuming Conjecture 1, then there is a random polynomial time
reduction from the elliptic curve discrete logarithm problem to the height decision
problem.

A result similar to Theorem 1 was obtained by Gjosteen [6] where the naive
height was replaced by the canonical height, and the height decisional problem
was replaced by the problem of computing the minimal canonical height for the
lifting. Gjosteen’s result dose not depend on any conjecture on ranks of elliptic
curves. However it requires that a set of generators be given explicitly for the
group of rational points of the target elliptic curve.

The shifting prime problem:
Input: p, r, E and T where p and r are prime numbers, E/Q is an elliptic

curve, T is a point on E1 where E1 is the reduction of E modulo p.



Output: A point R ∈ P2(Fr) which is the reduction of Y ∈ E(Q) modulo
r, where Y is any lift of P to Q. Here we use P2 to denote the 2-dimensional
projective space.

Theorem 2. Assuming Conjecture 1, then there is a random polynomial time
reduction from the elliptic curve discrete logarithm problem to the shifting prime
problem.

The straight-line description problem:
Input: p, r, E and T where p is a prime number, E/Q is an elliptic curve, T

is a point on E1 where E1 is the reduction of E modulo p.
Output: Straight-line programs of length polynomial in the size of input for

the projective coordinates of any lift of T on E .

Theorem 3. Assuming Conjecture 1, then there is a random polynomial time
reduction from the elliptic curve discrete logarithm problem to the straight-line
description problem.

It is easy to see that if we can solve the discrete logarithm problem on elliptic
curves, we can solve the shifting prime problem and the straight-line description
problem. Hence the shifting prime problem and the straight-line description
problem are equivalent to the discrete logarithm problem on elliptic curves.
However, it is unclear whether the height decision problem is equivalent to the
discrete logarithm problem on elliptic curves.

3 Reduction to the height decision problem

In this section, we prove Theorem 1 by demonstrating a random polynomial
time reduction from the elliptic curve discrete logarithm problem to the height
decision problem.

Suppose for the rest of this section that p is a prime larger than 3 and E is
an elliptic curve defined over Fp given by y2 = x3 +ax+ b with a, b ∈ Fp, E(Fp)
is cyclic of prime order r, and S, T ∈ E(Fp). In the discrete logarithm problem
we are to find m so that T = mS on E(Fp).

First we observe that if p is sufficiently large, then any lift E of E with good
reduction cannot have any nontrivial rational torsion point. Indeed by a result
of Mazur [12, 13], we know that E(Q) has at most 16 torsion points. Since the
torsion subgroup injects into E(Fp) and since the order of E(Fp) is prime, it
follows that the torsion part of E(Q) must be trivial. From now on we assume
that p is large enough.

Let X = (x0, y0) be the natural lift of S to Z.
In the first step of our reduction we construct a lift of E to some E/Q passing

through X, given by y2 = x3 + αx+ β with α, β ∈ Z, and (α, β) = 1. It follows
from the results in [22–24] that one can compute h0 ∈ Q in time polynomial in
log p so that |ĥ(X)− h0| < 1

r2 .



Since X ∈ E(Q) is non-torsion, E(Q) is of rank at least one. Moreover the
reduction map from E(Q) to E(Fp) is surjective, since S = X mod p and E(Fp)
is cyclic of prime order. Therefore every point in E(Fp) has a lift to E(Q). In
particular, T has a lift of the form mX.

Suppose E(Q) is of rank one and G is a generator of E(Q). (We will not
actually compute the rank nor a generator.) Then X = lG for some l ∈ Z, and
if nG mod p = T (n < r), lT has a lift nX. From l and n, the discrete logarithm
problem is solved, since upon reduction we get lT = nS.

Since X = lG, ĥ(X) = l2ĥ(G). Now by construction, ĥ(X) = (log p)O(1). On
the other hand, by [7, 3], ĥ(G) > c(log∆)−O(1) where c is an absolute constant
and ∆ is the minimum discriminant of E . It follows that l = (log p)O(1).

Again by the result in [22–24], we have |h(Y ) − 2ĥ(Y )| < c for Y ∈ E(Q),
where c is a constant independent of Y and E . In particular for positive integers
i < r,

|h(iX)− 2i2h0| ≤ |h(iX)− 2ĥ(iX)|+ |2ĥ(iX)− 2i2h0| < c+ 2.

Set c′ = c+2.Then it follows that if h(nX) < 2i2h0, then n ≤ i+c′. This implies
that using a binary search technique beginning with the query asking if lT is
liftable to a point of height no greater than 2r2h0, we can determine n within
O(1) in O(log p) queries.

Consequently, for the constructed lift E and each value of l up to (log p)O(1),
we will attempt to find an n < r so that lT has a lift to E(Q) of the form nX.
When we succeed to find such n for an l, we then verify if lT = nS and if so, the
discrete logarithm is solved. If we fail for all possible values of l, then it must
be the case that the rank of E(Q) is greater than one. In that case we construct
another random lift and apply the same procedure all over again. By our heuristic
assumption, a randomly constructed E(Q) has rank one with probability about
1/2, thus we expect to succeed in several trials with probability arbitrarily close
to 1. Hence Theorem 1 follows.

4 The shifting prime problem.

In this section, we show that the shifting prime problem is equivalent to the
discrete logarithm problem on elliptic curves. The main idea in the proof is to
lift an elliptic curve E/Fp to an elliptic curve E/Q of rank one with additive
reduction modulo r, where r is the prime order of E(Fp). We demonstrate that,
with the help of an oracle for the shifting prime problem, the discrete logarithm
problem on E(Fp) can be shifted over to the group of nonsingular Fr-points on
E mod r, which is isomorphic to the addition group of Fr, and the corresponding
discrete logarithm problem is easy to solve.

First we review some facts about additive reduction. Let E(Q) : y2 = x3 +
ax + b, a, b ∈ Z, be an elliptic curve over Q. It is possible that when modulo
some prime r, the reduction curve E/Fr is not smooth anymore. If E has a cusp,
we say that E is an additive reduction of E at r.



Let E(ns) be the set of non-singular points on E, we can define “addition”
on E(ns) in very much the same way as in the smooth case [26]. Moreover,

E(ns)(Fr) ∼= Fr

by sending (x, y) to x
y and the infinity point to 0. (Note that since (x, y) is not

a singular point, y 6= 0.) Hence the discrete logarithm problem on E(ns)(Fr) is
easy to solve.

For example, if E is defined by

y2 = x3 + ax+ b

where a, b ∈ Z. r 6= 2, 3. E has additive reduction at p if and only if r|a and r|b.
Let E(Q) be an elliptic curve with rank 1 and with no rational torsion point

other than O, and let G be the generator for E(Q). Let E1/Fp be the reduction
of E modulo p. Suppose the order of E1(Fp) is a prime r. Moreover suppose E has
additive reduction modulo r, and let E2/Fr be the resulting curve. Let G1 and
G2 be the reduction of G on E1 and E2 respectively. Moreover suppose that G1

and G2 are neither points at infinity nor singular. It follows that all the points
on E(Q) reduce to smooth points on E1 and E2. Let E(ns)

2 denote the set of non-
singular points on the curve E2. Then E(Q) → E1(Fp) and E(Q) → E

(ns)
2 (Fr)

are group homomorphisms.

E(Q)

↙ ↘

E1(Fp) ψ
−→ E

(ns)
2 (Fr)

Since E1(Fp) and E(ns)
2 (Fr) have same order, there is a well-defined isomor-

phism ψ between E1(Fp) and E(ns)
2 (Fr) determined by

ψ(iG1) = iG2.

Suppose T, S ∈ E(Fp), T = mS and we want to find m. Certainly ψ(T ) =
mψ(S). If we can solve the shifting prime problem efficiently, we will get ψ(T ), ψ(S).
Hence we have reduced the discrete logarithm problem in E1(Fp) to the discrete
logarithm problem in E

(ns)
2 (Fr). Since E2 is an additive reduction of E , the

discrete logarithm on E2 is simply division in finite fields.
Suppose E1 : y2 = x3 + ax + b is an elliptic curve over Fp with r points. S

and T are the input points for the discrete logarithm. Assume that r > 3 is a
prime. The reduction algorithm is as follows:

Algorithm 1 1. Let E2 : y2 = x3 over Fr.



2. Combine E1 and E2 to construct an elliptic curve E3 over ring Z/(pr) using
Chinese Remaindering.

3. Lift curve E3 to a random curve E over Q, passing a point X, where X is
natural lift of S′ on E3, which reduces to S on E1. (We may assume that S′

does not reduce to O on E2.)
4. Query the shifting prime problem for S and T with input prime r.
5. If the output points are S′ and T ′, we solve the discrete logarithm of T ′ base

S′ on E2. Let the result be m′.
6. Check whether T = m′S. If yes, output m′ and terminate the algorithm.

Otherwise, go back to step 3.

Step 2 can be done very efficiently. By Conjecture 1 we expect the curve
constructed in step 3 to be of rank one with reasonable probability. With the
same probability, we will get the correct discrete logarithm of T , once the shifting
prime problem is solved. Thus Algorithm 1 reduces the elliptic curve discrete
logarithm problem to the shifting prime problem in random polynomial time,
and Theorem 2 follows.

As in the previous reduction, we note that the reduction here is a Turing
reduction. Since discrete logarithm is easily to check for correctness, there is no
need to verify if the lifting curve is of rank one.

5 Straight-line program for the lifting points.

In this section, we will derive theorem 3 from theorem 2. Straight-line programs
are widely used for representing integers and polynomials, see [10] for an example.
We first give a formal definition of a straight-line program.

Definition 1. A straight-line program for an integer m (integers m1,m2, · · · ,mn)
is a sequence of assignments

z ← xαy

where z is a symbol never appeared before. α ∈ {∗,+,−} and x, y are two
previously appeared symbols or 1, such that after we run the program, the last
symbol (the last n symbols) stores the value m (m1,m2, · · · ,mn).

In some cases, a straight-line program is a compact description of a integer.
It can represent a huge number in small length. For example, mn has a straight-
line program of length (logmn)O(1). It is an important open problem whether
n! has a short straight-line program.

It seems hard to compute with straight-line programs. For example, given
straight-line programs for the integers x and y, it is not a trivial problem to
decide whether x = y. However, from a straight-line program of integer i, we
can read out the reduction of i modulo any prime p, by performing every step
of the straight-line program modulo p. Similarly, if we have the straight-line
program for the coordinates of a global point P = (x : y : z) ∈ P2(Q), we
usually can calculate the reduction of P at p for any given prime p.



However, there is some subtlety here. Let x, y, z be the integers output by
a straight-line program. If p 6 | gcd(x, y, z), we can compute the reduction of
(x : y : z) at p efficiently. If x, y, z share a lot of p’s, after executing the straight-
line program modulo p(or pi for i small), we get the point (0 : 0 : 0), which is not
well-defined in the projective space. This motivates us to define properly reduced
coordinates. Without lose of generality, let E/Q be an elliptic curve of rank one
with no rational torsion point other than O.

Definition 2. Let x′, y′, z′ be three integers, where (x′ : y′ : z′) = m(x : y : z) ∈
E(Q) and (x : y : z) is the generator of Mordell-Weil group of E(Q). If p 6 | z′,
whenever the order of (x : y : z) modulo p is greater than m, we call x′, y′, z′ the
properly reduced coordinates.

Let E be the reduction of E at p. Assume that every point on E is liftable to
E . Let P, r be the remaining input of shifting prime problem. Given an algorithm
which can solve the straight-line description problem with properly reduced out-
put, we can lift P to X, which is represented by a straight-line program of length
polynomial in the size of the input. Then making use of the fact that the output
of the straight-line program is properly reduced, we can compute X modulo r
for any prime r, hence provide answers to the shifting prime queries. This means
that we have reduction from shifting prime problem to straight-line description
problem. Thus Theorem 3 follows from theorem 2.

The proof of Theorem 3 raises the question of the existence of a “short”
straight-line program for properly reduced coordinates of a point on the elliptic
curve. We give an affirmative answer to this question.

Proposition 1. Given m,x, y, z, a, b ∈ Z where gcd(x, y, z) = 1 and (x : y : z)
is a point on the elliptic curve E defined by y2 = x3 + ax + b, we can write
a straight-line program for properly reduced coordinates x′, y′, z′ ∈ Z in length
logO(1)(|xyz|+ |m|+ |a|+ |b|), where (x′ : y′ : z′) = m(x : y : z) ∈ E(Q).

Proof: First, we consider the explicit formulas for addition of two points and
for doubling a point.

Let (x1 : y1 : z1) and (x2 : y2 : z2) be two points on an elliptic curve
E : y2 = x3 + ax + b, x1, y2, z1, x2, y2, z2 ∈ Z. Assume that gcd(x1, y1, z1) =
gcd(x2, y2, z2) = 1. If x1z2 6= x2z1, then according to the addition law on elliptic
curves, (x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3), where

x3 = z1z2(y2z1 − y1z2)2(x2z1 − x1z2)− (x1z2 + x2z1)(x2z1 − x1z2)3

y3 = (y2z1 − y1z2)(z1z2(y2z1 − y1z2)2 − (x1z2 + x2z1)(x2z1 − x1z2)2)
−z1z2(y1x2 − y2x1)(x2z1 − x1z2)2

z3 = z1z2(x2z1 − x1z2)3

From the formula we conclude

Lemma 1. p 6= 2, 3.If (x1 : y1 : z1) and (x2 : y2 : z2) are not the infinite point
and (x1 : y1 : z1) 6≡ −(x2 : y2 : z2) mod p, then p 6 | z3.



If (x1 : y1 : z1) = (x2 : y2 : z2) and y1z1 6= 0, then

x3 = 2y1z1(3x2
1 + az2

1)− 16x1y
3
1z

2
1

y3 = −(3x2
1 + az2

1)((3x2
1 + az2

1)− 8x1y
2
1z1)− 4y2

1z1(x
3
1 + ax1z

2
1 + 2bz3

1)
z3 = 8y3

1z
3
1

From the formula we conclude

Lemma 2. p 6= 2, 3. If (x1, y1, z1) is not a torsion point of order 2 modulo p
nor O modulo p, then p 6 | z3.

Write m in binary
∑a

i=1 2ei , 0 ≤ e1 < e2 < · · · < ea, then

m(x : y : z) =
a∑

i=1

2ei(x : y : z).

When we apply the squaring technique to write straight-line program for m(x :
y : z), we first use the doubling formula to compute 2e1(x : y : z), 2e2(x : y :
z),· · ·, 2ea(x : y : z). Then we use formula for addition of two different points
to sum them up. It is not possible that some of the intermediate points will be
equal, as long as (x : y : z) is not a torsion point. This concludes the proof of
proposition 1.

Let E/Q : y2 = x3 + ax + b, a, b ∈ Z, be an elliptic curve with rank 1.
Every liftable point on its reduction curve has a short straight-line program.
More precisely, we have

Corollary 1. let E be the reduction of E modulo prime p. If Q ∈ E/Fp is liftable
to E(Q), then it can be lifted to some X ∈ E(Q) which has a properly reduced
straight-line program of length logO(1)(|a|+ |b|+ |p|).
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