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Abstract. Let k and n be positive integers. Define R(n,k) to be the
minimum positive value of

leiv/s1 + e2y/s2 + -+ + exr/Sk — t]

where s1, s2,- -+ , Sk are positive integers no larger than n, t is an integer
and e; € {1,0,—1} for all 1 <4 < k. It is important in computational
geometry to determine a good lower and upper bound of R(n, k). In this
paper we show that this problem is closely related to the shortest vector
problem in certain integral lattices and present an algorithm to find lower
bounds based on lattice reduction algorithms. Although we can only
prove an exponential time upper bound for the algorithm, it is efficient
for large k when an exhaustive search for the minimum value is clearly
infeasible. It produces lower bounds much better than the root separation
technique does. Based on numerical data, we formulate a conjecture on
the length of the shortest nonzero vector in the lattice, whose validation
implies that our algorithm runs in polynomial time and the problem of
comparing two sums of square roots of small integers can be solved in
polynomial time. As a side result, we obtain constructive upper bounds
for R(n, k) when n is much smaller than 22

1 Introduction

Comparing sums of square roots of integers is a famous open problem in compu-
tational geometry and numerical analysis. It arises when we need to compare the
length of two polygonal paths in a Euclidean space. The problem takes another
form when one compares a sum of square roots with an integer. This problem is
not known to be in NP. In fact, PSPACE is the smallest well studied complex-
ity class that provably contains this problem [11]. In practice, however, it can
usually be solved quickly.

* This research is partially supported by NSF Career Award CCR-0237845 of USA
and by Project 973 (no: 2007CB807903 and no: 2007CB807902) of China.



Definition 1. Define r1(n,k) to be the minimum positive value of

V1 + /52 4+ fBlay2] — /Sl — VK]

where $1, 82, , Sk are positive integers less than or equal to n. Define ro(n, k)
to be the minimum positive value of

V1 +/sa+ -+ /s — 1

where Si1,82,--+ ,Sk are positive integers less than or equal to n and t is an
integer. Define R(n, k) to be the minimum positive value of

ler/s1 +eay/s2 4+ -+ + ep/si — t

where s1,82,- - ,SE are positive integers mo larger than n, t is an integer and
e; € {1,0,—1} for all1 <i<k.

For example, we have that

1(3,3) = ‘\/:’3— Vi— ﬁ‘ ~ 0.268,
ro(3,3) = ‘\/§+ \@+ﬁ—4‘ ~ 0.146

and

R(3,3) = (\@Jr\/i— V3 1‘ ~ 0.096.

It is easy to see that R(n,k) < ri(n,k) and R(n,k) < ry(n, k). Since we are
mainly interested in the lower bounds, we shall be concentrating on R(n, k). If
one can show that R(n, k) > 1/2p°ly(klogn) ‘then comparing the sum of k square
roots of integers no larger than n can be done in time polynomial in &k and log n.

The problem of sum of square roots has recently attracted attention. First
it is the main barrier to accurately classify some of the most fundamental com-
putational problems in Euclidean space, such as the shortest path problem, the
minimum spanning tree problem and the traveling salesman problem [5]. Sec-
ondly it is the simplest among the problems of the sign determination of algebraic
numbers of high degree. Thirdly it has been used to show hardness of problems
in other area such as approximation of 3-player Nash equilibrium [4].

1.1 Previous work

The zeroes of

f(s1, 5 8k) =81+ S2+ -+ /5kj2] — /Slk/2)+1 — " — Sk

form a surface in Ri, where s; is nonnegative for 1 < i < k. To bound r1(n, k) we
consider an equivalent problem: how near to the surface can an integral point of
absolute height no larger than n get and still miss? In general finding a near-miss
integral point to a surface is a very hard problem. Elkies [3] presented algorithms



for these kind of problems with time complexity better than an exhaustive search.
As an example, he showed how to find integral points near the curve 23 —y? = 0.
It seems hard to generalize his algorithm to the sum of square roots problem as
the dimension is much higher.

The known lower bound comes from the root separation technique (for in-
stance see [2] and [1]), which shows that

ri(n, k) > max ((k\/ﬁ)*zkﬂ’ (k\/ﬁ)fgﬂn)—l)

where 7(n) is the number of primes no larger than n, and

R(n, k) > max ((Qk;\/ﬁ)_Qkfl, (Qk\/ﬁ)_ﬂ(")fl) .

For example, it gives

_ 937

R(165,100) > (200\/165) ~y 1( 468635490828 (1)

The lower bound is too small when k£ and n are large. However no significantly
better lower bound has been reported as far as we are aware.

Qian and Wang [9] presented an upper bound for 71 (n, k) based on the in-
equality:
L .
> (Z> (-1)VE+i

=0

1x3%5%-- % (2k — 3)

< 1
- Qkth—3

Note that (If) can be as large as (kljz) > 2F /k. For any fixed positive integer k,
taking

k 2
n=2%%t> max (| (t+1), (2)
0<i<k \ ¢

we have

ri(n, k) < ij(—w' (’;)2(t+z’)

i=0
< 1*3*5*"'*(2k;—3)*22k2—2k
B (22k¢)k—3

where C, = 1%3%5%---x(2k—3) %22k°=2k i5 4 constant depending only on k. By
(2), we have that Qian and Wang’s result only applies when n is much greater
than 22*. In particular it does not give a meaningful bound when k& = 100 and
n < 2290 ~ 1050,



1.2 Our results

We present a method to numerically bound R(n, k) from below based on lattice
reduction. Our method is efficient for large k and n such as kK = 100 and n = 165,
where an exhaustive search is clearly infeasible. The lower bounds we obtain are
much better than the root separation bound. See Table 1 that compares our
lower bounds with that of the root separation technique.

Table 1. Comparing our lower bounds with those of the root separation technique

R(n,k) |Root Separation Technique|Lattice Reduction Technique
Lower Bound Lower Bound

R(15,10) 1070 10720
R(33,20) 1072418 10750
R(47,30) 10742832 10780
R(66,40) 10— 368688 10—120
R(82,50) 10—6201084 10-155
R(97,60) 1051549123 10-195
R(113,70) 10— 1703312763 10—240
R(131,80) 10~ 7006714363 10—290
R(146,90) 1()— 28668468036 10-335
R(165, 100) 10— 468635490828 1039

Define [z] = |z + 1/2] and {z} = = — [z]. We call an integer b square-free if
there does not exist an integer a > 1 such that a?|b. We denote the i-th square
free integer starting from 2 by o(7). It is known that the square roots of distinct
square-free integers are linearly independent over Q and o (%) satisfies (see [8])

o(i) = 7% /6 + O(Vi). (3)

Let s1,s9, -+, sk be the distinct square-free integers no smaller than 2. Let
N be a positive integer. Our method is based on studying the integral lattice
generated by the following k + 1 vectors in RF*+1,

= N7070707"' 70)

(

(IN/51),1,0,0,---,0)
v = ([Ny/52],0,1,0,---,0,)

(

V’f:([N\/Sk a070707"' 71)

We denote the lattice by Ls, sy, s, (N). If 51 = 2,590 = 3,--- , s, = o(k) are
the consecutive square free integers, we will simply use L(k, N) to denote the
lattice.



In this paper, we are mainly concerned with R(o(k), k), since a good lower
bound on R(o(k),k) can imply a good lower bound on R(n, k) whenever n =
kOW.

Lemma 1. If R(o(k),k) > 1/2P°Y*) then R(n, k) > 1/2PoW (k)

Proof. If n < o(k), then R(n, k) > R(o(k),k). If n > o(k), by (3), there exists
k' = 6n/m? + O(y/n) such that o(k’) <n < o(k’ + 1), then

R(n, k) > R(o(kK'), k') = 1/2pPo (k)

The following theorem relates the shortest vector of L(k, N) to a lower bound
of R(o(k), k).

Theorem 1. If there is a positive integer N such that the shortest monzero
vector in L(k, N) has length greater than \/(1 + kv/o(k)/2)?2 + k20(k), then

R(o(k),k) > 1/N.
We can also obtain constructive upper bounds from the following theorem.

Theorem 2. Let (s,a1,az, - ,ax) be a vector in L(k, N). Then there exists an
integer b such that

k
Zam/a(i) -b

b 1
< (ISI + Z |a¢/2> ¥

We set N to be large and use a lattice reduction algorithm to find a short
vector (s,ay,az, - ,ax) in the lattice L(k, N). It gives us a constructive upper
bound. For example, we have found that integers a1, as, - - - , a199 and t such that
maxi<;<100 afa(z) = 19796 and

100

Za“/a(i) —t

~ 10717,

which implies a constructive upper bound R(19796,100) < 10~ 115,

1.3 Organization

In Section 2, we review some relevant facts about lattice and present our algo-
rithm to find a lower bound for R(o(k), k). In Section 3, we prove a rigorous
exponential time upper bound exp(O(k)) for the algorithm and present some
numerical data. Based on the data we formulate a conjecture which implies that
our algorithm runs in time O(poly(k)). In Section 4, we prove Theorem 1. In
Section 5, we prove Theorem 2 and another theorem on a provable upper bound
for some R(n, k) where n is much smaller than 22%. Throughout this paper, we
use lattice functions in Victor Shoup’s NTL package to produce numerical data.
The block size of the BKZ reduction is set to be 10.



2 Lattices and Our Algorithm

In the m-dimensional Euclidean space R™, a (full rank) integral lattice is the

set
{szblxl S Z} R
=1

where by, ba, - - - b, are linearly independent vectors over R and b; € Z™ for all
1 < ¢ < m. The determinant of a lattice is defined to be the absolute value of the
determinant of the matrix (b;;) where b;; is the j-th coordinate of b;. Assume
that a lattice has determinant D and the shortest nonzero vector has length .
Minkowski’s first theorem (see page 12 in [7]) asserts that A < \/mD™.

Finding the shortest nonzero vector in a lattice is a well studied problem.
The Block-Korkine-Zolotarev (BKZ) lattice reduction algorithm, which is based
on the famous LLL lattice reduction algorithm, can find a nonzero vector whose
length is at most 20(m(ninm)*/Inm)\ iy polynomial time [10]. Although the
algorithm usually performs better than the worst case approximation ratio, it is
not believed that a polynomial time algorithm can find nonzero vectors of length
20(VIogm) ) for general lattices [6]. See [7] for a survey on computational lattice
problems.

To use Theorem 1, we need a good lower bound on the length of the short-
est nonzero vector in L(k, N). We first apply the BKZ reduction algorithm on
L(k,N) to obtain a reduced base. We then apply the Gram-Schmidt orthogo-
nalization on the reduced base. Let A\*(k, N) denote the length of the shortest
Gram-Schmidt vector (we will omit k& and N if they are clear from the context).
Then A*(k, N) is a lower bound for the length of the shortest nonzero vector in
L(k,N). The main process of our method can be illustrated as follows:

BKZ

L(k‘,N) — (vé,v’h.,, ,V;C)Gmm*Schmzdt .

— (VO’Vla"' ’VZ)'

Note that one should not apply the Gram-Schmidt orthogonalization directly on
L(k,N). Otherwise the shortest Gram-Schmidt vector will always have length
1. The algorithm is described as follows.
Algorithm 1:
Input: k, step;

N=1;

A* =0

while A* < /(1 + ky/a(R)/2)2 + k2o (k) do
N = N x step;

Apply the BKZ lattice reduction algorithm on L(k, N);

Apply the Gram-Schmidt orthogonalization on the reduced base;

Let A* be the length of the shortest vector in the Gram-Schmidt base.
endwhile
Output 1/N as the lower bound for R(c(k), k).

© XN W




3 Time Complexity Analysis and Numerical Data

Theorem 3. Algorithm 1 runs in time at most exp(O(k)).

Proof. Denote the length of the shortest vector in L(k, N) by A. Let [ be the
length of the shortest vector in the reduced base. From the proof of Lemma 2.8

in [7], we derive that
A <1< 2Ry

We shall prove that if N > 23%2" then A > 22, which implies that for k > 7

A
Nz gz 2 > 8k

On the other hand, we know from formulae (3) that for k& big enough, o(k) < 2k.
Hence

\/(1 +ky/o(k)/2)? + k20 (k) < \/(1 + kV2k/2)2 + 2k3 < \/2k3 + 2k3 < 3k,

This shows that the algorithm will terminate before N exceeds 23%2". The time
complexity is thus at most O (k:Qkpoly (k: log 23k2k)), which is exp(O(k)).

Assume that N > 232" Any nonzero vector in the lattice has form

(i:ai [N\/@} —bN,aq,a0, - ,ak>

i=1

for some integers ai,as, -+ ,ar and b. It is enough to show that the length of
the vector is greater than 22%. If for some a;, |a;| > 2%¥, then the length of the
vector is greater than 22*. So we may assume that la;| < 22k forall 1 <i < k.

3 a [N\/@} _bN| = ‘ia (N\/m— {NW}) - bN‘

i=1

) ’

Y

k

S {NW}’

=1
k

Syl
, 2
=1

k22k
2

k
ZaiN\/U(i) - bN‘ -

>N

k
Zam/a(i) -b

>N

k
Zam/a(z') -b

By the root separation bound,

_ok—1

k22k k’22k
- >N|2 24k —
5 2 ( ky/ U(k)) 5

which is greater than 22% as N > 232",

k

Zai o(i)—b

=1

N




The above theorem gives us an exponential upper bound of the time com-
plexity. However from numerical experiments, we can see that the algorithm
terminates quickly and enables us to find a lower bound of R(o(k), k) much
better than the root separation bound.

We list in Table 2 the values of 2 and (\*)? for L(100, N) where N starts
from 10°° and keeps increasing by a factor of 10°. From Table 2, we learn that
the square length of the shortest nonzero vector in the lattice L (1007 10390) is
greater than 3102794. Since (1+ 100v/165/2)” 4 1002 165 = 2063785.52.., we
obtain that R(165,100) > 10739, Similarly we can get the other data on the
right-hand side in Table 1.

Table 2 and Table 3 illustrate that the ratio between \* and N7+ remains
about the same when N increases. Note that A*(k, N) is the lower bound of the
length of the shortest nonzero vector in L(k, N). Based on this observation, we

formulate the following conjecture on the length of the shortest nonzero vector
in L(k,N):

Congecture 1. The shortest nonzero vector in the lattice L(k, N) has length
greater than Nﬁ/k.

Corollary 1. If Conjecture 1 is true then

1. R(o(k),k) > 1/(20(k)k*)",
2. Algorithm 1 runs in time O(poly(k)).

Proof. Set

N = Kk <(1 +k¢aT@/2)2 +k20(k)>>j .

The first item follows from Theorem 1 and Conjecture 1. The time complexity
of Algorithm 1 is O(k - poly(klog N), which is at most O(poly(k)). Thus the
second item holds.

It is interesting to contrast L(k, N) with a similar lattice generated by

(N[y/sk],0,0,0,--- ,1).

It is easy to see that the shortest vector in the lattice always has length 1 no
matter how large N is.



Table 2. The data for L(100, N) (c(100) = 165)

log,o N 12 (A2 [\ /NET|log, N 12 (A2 [y /NF
50 189] 0.920102]  0.31 55 187 1 029
60 267| 0.848578|  0.23 65 318| 1.075123| 0.2
70 379 1.251328|  0.23 75 531| 1.496321  0.22
80 711| 1.905386|  0.22 85 824| 2.645646)  0.23
90 1039 3.06067|  0.23 95 1466| 3.489959|  0.21
100 1959| 5.242274] 023 105 2339| 6.414824)  0.23
110 2726 7.750273| 023 115 3639 10.30219]  0.23
120 4370 11.97402) 022 125 5512| 14.85322|  0.22
130 6936| 17.7999] 022 135 9345 26.00225|  0.23
140 10479] 32.10648]  0.23| 145 11789| 38.72952|  0.23
150 18949 45.87119|  0.22|| 155 20579| 71.66641|  0.25
160 23457| 81.06815  0.23| 165 33572| 108.6672|  0.24
170 40148| 122.6395 023 175 52839| 157.6955)  0.23
180 72509 185.265  0.22 185 81220 271.003|  0.24
190 96242| 279.2017|  0.22|| 195 116002| 416.3477|  0.24
200 165201| 421.7492|  0.21|| 205 182891| 662.0805|  0.24
210 267509 786.044) 023 215 307450 11035  0.25
220 411200| 1241.363]  0.23| 225 530717| 1566.732|  0.23
230 484931| 1948.158|  0.23] 235 761232| 2508.116|  0.24
240 1010500| 2877.924|  0.23|  245|  1273000| 3674.155|  0.23
250| 1628420 4691.54)  0.23| 255|  1699623| 581591  0.23
260|  2345060| 8097.233|  0.24|  265|  2735544| 10196.72|  0.24
270|  3830216| 12159.34|  0.23|  275|  4483731| 14841.72|  0.23
280|  6448480| 20310.26|  0.24|  285|  7963507| 21892.18|  0.22
200|  9576142| 29173.78|  0.23|  295| 11065095 37113.27|  0.23
300  14625831| 47887.96|  0.23|  305|  20017801| 54521.73|  0.22
310 22107891| 70218.28)  0.23|  315| 30329692 92013.94|  0.23
320]  42326718| 133759.6 025  325| 50110184 160807.8|  0.24
330 58226453 163842| 022  335| 73620063 209813|  0.22
340|  101230523| 289148.6(  0.23| 345 116341856 367148.5|  0.23
350| 134263638| 446526.2|  0.23| 355 176973638 606588.9|  0.24
360| 195623258| 577848.5|  0.21| 365 295497369| 953276.7|  0.24
370| 254486097 1108836|  0.23| 375 365813532 1383326|  0.23
380| 620569774 1500616(  0.21| 385 857210733 1906762|  0.21
300| 936892300 3102794|  0.24| 395 1214701229 3716443|  0.24
400| 1512222196 4440063|  0.23|  405| 1815150428| 4762491|  0.21
410| 2479097817 6683891  0.23 415 2825781352| 8365474|  0.23
420| 3315764769| 11230408  0.23| 425 4759873617|13620881|  0.23
430| 5567641140( 18494986  0.24| 435 7323262414| 20738831  0.22
440| 9416436554] 29562467 0.24|  445| 10529606845| 31706291  0.22
450 13988024828( 44253095 0.23|  455| 20051717365| 58023065  0.24
460 24926540282( 72675194 0.24|  465| 26802599860 84410497|  0.23
470( 35908570410| 88432810]  0.21|  475| 42772055636|1.46E+08|  0.24
480| 55777952874(1.55E+08|  0.22|  485| 68743792860(2.23E+08|  0.24
490( 89063811044| 2.9E+08|  0.24  495/1.18668E+11[3.22E+08|  0.23
500|1.37020E+11|4.57E+08|  0.24|  505|1.79821E+11|5.16E+08|  0.23
510|2.02652E+11|7.26E+08|  0.24| 515/ 2.5021E+11|7.87E+08|  0.22
520|4.04579E+11|1.12E+09|  0.24|  525/4.64658E+11| 1.4E+09  0.24
530(5.00824E+11| 1.6E+09|  0.23|  535| 6.7777E+11|2.51E+09|  0.25
540(9.40142E+11| 24E+09|  0.22|  545/1.03272E+12(3.12E409]  0.22
550|1.23394E+12|4.13E+09|  0.23|  555| 1.7404E+12(5.28E+09|  0.23
560|2.04264E+12|6.78E+09|  0.23|  565|2.53027E+12(7.92E+09|  0.23
570|3.14243E+12|1.00E+10|  0.24|  575/4.00544E+12(1.20E+10  0.23
580|5.82342E+12|1.37TE+10[  0.21|  585(6.91689E+12(2.09E+10|  0.23
590|8.50935E+12(2.13E+10]  0.21|  595|1.11703E+13(2.95E+10|  0.22




Table 3. The data for \*(k, N)/N =+t

log,g 10 | 20 | 30 | 40 | 50| 60| 70| 80 | 90 | 100
50 0.83]0.74 1 0.62 | 0.56 {0.48]0.42{0.36| 0.29 [0.27| 0.31
60 0.91|0.78 | 0.64 | 0.57 |0.47|0.41]0.34| 0.32 |0.27| 0.23
70 0.90 | 0.78 | 0.65 | 0.55 |0.47|0.39]0.35| 0.31 {0.29| 0.23
80 0.91]0.77 | 0.66 | 0.58 |0.50]0.42|0.36| 0.33 [0.28| 0.22
90 0.90 | 0.69 | 0.65 | 0.58 |0.49]0.41]0.37| 0.30 {0.24| 0.23
100 0.90 | 0.76 | 0.65 | 0.57 |0.49]0.43]0.35| 0.30 {0.28| 0.23
110 0.94|0.73 | 0.64 | 0.56 |0.46|0.44]0.35| 0.32 |0.27| 0.23
120 0.7510.73 | 0.62 | 0.59 |0.47]0.41]0.34| 0.30 |0.27| 0.22
130 0.910.80 | 0.63 | 0.56 |0.49]0.42]0.36| 0.29 |0.27| 0.22
140 0.89|0.78 | 0.67 | 0.56 |0.51]0.39]0.35| 0.31 {0.29| 0.23
150 0.89 | 0.77 | 0.66 | 0.53 |0.48]0.43]0.35| 0.32 |0.27| 0.22
160 0.9210.79 | 0.64 | 0.59 |0.50{0.39]0.36| 0.32 |0.25| 0.23
170 0.89|0.75|0.64 | 0.51 |0.47|0.41]0.36| 0.31 |0.28| 0.23
180 0.92 | 0.74 | 0.65 | 0.58 |0.48]0.43]0.36| 0.30 |0.25| 0.22
190 0.93 | 0.84 | 0.65 | 0.56 |0.45]0.38]0.39| 0.29 |0.26 | 0.22
200 0.90 | 0.78 | 0.66 | 0.52 |0.47]0.42]0.34| 0.32 |0.28| 0.21
210 0.83 | 0.80 | 0.64 | 0.56 |0.48]0.42]0.40| 0.33 |0.25| 0.23
220 0.7910.77 | 0.67 | 0.57 |0.51]0.44]0.35| 0.30 [0.28| 0.23
230 0.94|0.73 | 0.62 | 0.58 |0.44|0.43]0.33| 0.30 {0.27| 0.23
240 0.910.79 | 0.67 | 0.58 |0.48]0.42]0.36| 0.31 [0.25| 0.23
250 0.910.80 | 0.63|0.53|0.47|0.41]0.36| 0.31 {0.26| 0.23
260 0.93|0.77 | 0.63 | 0.55 |0.47|0.43]0.36| 0.33 |0.28| 0.24
270 0.91|0.74 | 0.66 | 0.54 |0.50|0.43]0.39| 0.30 {0.27| 0.23
280 0.85|0.81 | 0.63|0.550.47|0.42]0.36| 0.31 |0.26 | 0.24
290 0.920.79 | 0.64 | 0.55 |0.49|0.40(0.37| 0.32 |0.26 | 0.23
300 0.94]0.78 | 0.68 | 0.57 [0.47]|0.42|0.34| 0.32 |0.25| 0.23




4 The Proof of Theorem 1

To prove Theorem 1, we need the following lemma.

Lemma 2. Let s1,82,---,8; be k distinct positive square free integers. Let A

be the length of the shortest nonzero vector in Ly, s, ... s, (N). For any integers
K N 2

ap,ag, -, akvb if(bvalaa'Qv"' ;ak) 7é (0,0707" : 70); andAz Z (1 + M) +

k
Y oic1 Z, then

1
> —.
- N

k
Z ai\/,?i —b
i=1

Proof. The vector

k
(Zai[N\/Si —bN,ay,az,--- ﬂk)
i=1

is nonzero and in the lattice, hence its length

Za2+ <Zal N /51 —bN>2

=1
is no smaller than X\. We have
i ) &
S it (Savs o) = (1 Zll) s
=1 )

It implies that

ZalN\/E]be >1+2121| al
The left hand side is
k k
> N s] - bN| = > ai(Ny/s — {Nysi}) - bN
i=1 =1
k k
<D aiNsi—bN|+ | ai{Ny/si}
=1 1=1
k k
< IS aNyE N[+ Jad Ny
=1 =1
k k
<> aiNysi—bN|+ %
=1




So we have .
> aiNy/s; —bN
i=1

therefore |S°F_ | a;\/5; — b‘ >1/N.

> 1,

Now we are ready to prove Theorem 1.

Proof. Let n;, 1 < i < k be positive integers < o(k), m be an integer and e; €

{1,0,—1} for all 1 < i < k. We can write ZZ 1 €i\/T; —m as Zle ai\/o(i) — b
where aq,as,- - ,ak,b are integers. We have that

Z|a1|<2|a1|\/7<2\/772<k\/7

i=1

and

Assume that (ag,aq,
tor in the lattice L(k, N

(1—&-]@\/7/2) + k20( <1+Z“|1> +Zal,

we conclude from Lemma 2 that,

ag,b) # (0,0,---,0,0). Since the shortest nonzero vec-
has length at least

~—

k k
1
/T —m| = o(i) —b| > —.
Z:e“/rTZ m‘ Zaz o(i) —b| > N
=1 i=1
5 Upper Bound
Now we can prove Theorem 2.
Proof. Since (s, a1,aa, - ,ak) is a vector in the lattice L(k, N), there exists an

integer b such that

3 a [N\/%} BN | =

i=1

) |
Then

ZaZNF bN| =

; ([vve@] + {Nvem}) bN‘

<> a {NF} —bN|+

=1

< sl +Z|ai|/2'
i=1

S ()|

=1



Hence the theorem follows.

We may apply the BKZ reduction algorithm on the lattice and obtain a
2
nonzero vector (s,a,as,--- ,ax) of length at most 90 (k(nInk)?/Ink) Nty The
data is listed in Table 4. More generally, we have

Theorem 4. Let sy, S0, , sk be k distinct square free integers no smaller than

2. For any integer N, we can find integers ay,as, - - ,ar and b in polynomial time
2

satisfying that |a;| < 90 (k(inlnk)*/Ink) Ny foralll <i<k and

k

Zaiﬁ—b

i=1

< 2o(k(lnln k)?/1In k)N,;—jl

Proof. The determinant of the lattice L(k, N) is

N 000---
[Ny51] 100 ---
[Ny/52) 010 ---
[N/53]001 -

o o oo

IN\GE 000 1

By Minkowski’s first theorem, there is a vector of length vk + 1N W1 or shorter
in the lattice. If we apply the BKZ reduction algorithm on the lattice, we obtain a
nonzero vector (s,ay,as, -+ ,ax) of length at most 90(k(Inlnk)*/1n k) N'#%7 | Thus
lai] < 20(1c(1nlnk)2/1nk)Nﬁrl for all 1 <i < k and |s| < 2o(k(1n1nk)2/1nk)N#1'
We have

k

Zaz\/g—b

i=1

k
< <|s| +y Iaz-/2> N1 = 0(k(nink)*/ink) nrasty

i=1

6 Concluding Remarks

In this paper we present a numerical method that finds a much better lower
bound for R(n, k) than the previously known methods do. The main open prob-
lem is to prove Conjecture 1, which implies that our method runs in polynomial
time.
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