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Abstract. Finding the shortest vector of a lattice is one of the most im-
portant problems in computational lattice theory. For a random lattice,
one can estimate the length of the shortest vector using the Gaussian
heuristic. However, no rigorous proof can be provided for some classes of
lattices, as the Gaussian heuristic may not hold for them. In this paper,
we propose a general method to estimate lower bounds of the shortest
vector lengths for random integral lattices in certain classes, which is
based on the incompressibility method from the theory of Kolmogorov
complexity. As an application, we can prove that for a random NTRU
lattice, with an overwhelming probability, the ratio between the length
of the shortest vector and the length of the target vector, which corre-
sponds to the secret key, is at least a constant, independent of the rank
of the lattice.
Key words: Shortest vector problem, Kolmogorov complexity, NTRU
lattices, random lattices, Gaussian heuristic.

1 Introduction

A lattice is a set of points in a Euclidean space with periodic structure. Given n
linearly independent vectors b1, . . . ,bn ∈ Rm(n ≤ m), the lattice generated by
them is the set of vectors

L(b1, . . . ,bn) = {
n∑
i=1

xibi : xi ∈ Z}

The vectors b1, . . . ,bn form a basis of the lattice.
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The most famous computational problem on lattices is the shortest vector
problem (SVP): Given a basis of a lattice L, find a non-zero vector u ∈ L, such
that ‖ v ‖≥‖ u ‖ for any vector v ∈ L \ 0. For the hardness of SVP, Ajtai first
proved that SVP is NP-hard under a randomized reduction [2] and his result
was strengthened in [15][4][10][7]. An upper bound for the length of the shortest
vector is given in the famous Minkowski Convex Body Theorem. Nevertheless,
there is no known efficient algorithm which can always find a vector within the
Minkowski bound.

The study of random lattices has a long history, dated back from [18]. It
turns out that one can define a measure on the set of all n-dimensional lattices
of a fixed determinant, and have a precise estimation of the expected length
of the shortest vector [3], which can be summarized by the so-called Gaussian
heuristic. Given an n-dimensional lattice L with determinant det(L), the Gaus-
sian heuristic predicts that there are about vol(C)/det(L) many lattice points
in a measurable subset C of Rn of volume vol(C). It can be made precise, for
example, when C is convex and symmetric around the original point O, and
vol(C) is much bigger than det(L). If we take C to be an n-sphere centered at
O, for C to contain a point other than O, vol(C) should be about det(L) accord-
ing to the Gaussian heuristic. In other words, the length of the shortest vector
can be approximated by the radius of a sphere whose volume is det(L), which is
about

√
n/2eπdet(L)1/n. As an interesting comparison, the Minkowski Convex

Body Theorem asserts that if the volume of sphere C is greater than 2ndet(L),
then it must contain a nonzero lattice point. This gives an upper bound of the
shortest vector length at about

√
2n/eπdet(L)1/n, which is only twice as large

as the prediction made from the Gaussian heuristic.
Most of lattices appearing in cryptanalysis are random in some sense, but

many of them have integral bases and hence are not random according to the
above measure. See [16] for further discussions. The length of the shortest vector
may be much shorter than the prediction made from the Gaussian heuristic. In
this paper, we investigate the idea of using the theory of Kolmogorov complex-
ity to estimate the expected length of short vectors of a given random integral
lattice. Kolmogorov complexity has many applications in computational com-
plexity and combinatorics. It is an ideal tool to obtain lower bounds [12]. While
all the methods based on Kolmogorov complexity can be replaced by elementary
counting arguments, and our result is no exception, we believe that the Kol-
mogorov complexity method is conceptually simpler, more intuitive and more
systematic than a direct counting argument.

As a crucial application, we consider random NTRU lattices which are used
to analyze NTRU cryptosystems. The NTRU cryptosystem was first introduced
at the rump section of Crypto 96 by [8]. It operates in the ring of truncated
polynomials given by Z[X]/(XN−1). Let Sf and Sg be some sets of polynomials
in Z[x] of degree at most N −1 and of very small coefficients. Let q be a positive
integer. Select polynomials f(x) ∈ Sf and g(x) ∈ Sg. Let h(x) =

∑N−1
i=0 hix

i be
the polynomial such that

h(x)f(x) = g(x) (mod q, xN − 1).
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Define the cyclic matrix

H =


h0 h1 · · · hN−1

hN−1 h0 · · · hN−2

...
. . .

...
h1 h2 · · · h0


The security of the NTRU cryptosystem is related to the difficulty of finding
short vectors in an NTRU lattice [5, 8]:

LNTRU =
(
I H
0 qI

)
. (1)

We call an NTRU lattice (Sf , Sg)-random if f(x) is selected uniformly at random
from the invertible elements ( in the ring (Z/qZ)[x]/(xN − 1) ) in Sf , and g(x)
is selected uniformly in random from Sg.

Remark 1. A random NTRU lattice can not be obtained by selecting (h0, h1, h2,
· · · , hN−1) uniformly at random from (Z/qZ)N . In fact, a lattice obtained in
that manner is most likely not an NTRU lattice.

Interestingly Gaussian heuristic clearly does not hold for random NTRU lat-
tices. According to the Gaussian heuristic, the shortest vector length is Ω(

√
Nq).

However, the vector of the coefficients of f and g, which will be called the tar-
get vector, is in the lattice and has length O(

√
N), since f and g have very

small coefficients. Many researchers conjecture that the target vector is indeed
the shortest vector in the lattice in most of cases. However, no formal proof has
been provided.

Remark 2. It is important to bound the length of the shortest vector from below
in an NTRU lattice, since if the shortest vector is significantly shorter than the
target vector, say that it has length o(

√
N), then it can be recovered by an ex-

haustive search in time 2o(N), and can be used in breaking NTRU cryptosystems
[5].

In this paper, we prove that with an overwhelming probability, the ratio between
the length of the shortest vector and length of the target vector is at least a
constant. In other words, we prove that most likely, the target vector is as long
as the shortest vector up to a constant factor. As far as we know, this is the
first lower bound result on the lengths of the shortest vectors in random NTRU
lattices.

Remark 3. Since it is known that approximating the shortest vector by any
constant factor is NP-hard [10] for general lattices, this result provides a some
evidence for the security of the NTRU cryptosystem against the lattice reduction
attack. However, our results do not rule out other types of attacks that may not
be based on lattice reductions.
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The rest of the paper is organized as follows. In Section 2, we will review
some backgrounds about lattices and Kolmogorov complexity. In section 3, we
prove the main theorem that allows us to compute lower bounds of the shortest
vector lengths in random lattices. In Section 4, we present and prove the lower
bound of the shortest vector lengths of random NTRU lattices. We conclude this
paper in Section 5. In this paper, we use log to denote the logarithm base 2 and
use ln to denote the natural logarithm.

2 Preliminaries

2.1 Lattices

Let Rm be the m-dimensional Euclidean space. A lattice in Rm is the set

L(b1, . . . ,bn) = {
n∑
i=1

xibi : xi ∈ Z}

of all integral combinations of n linearly independent vectors b1, . . . ,bn ∈ Rm.
The integers n and m are called the rank and dimension of the lattice. A lattice
can be conveniently represented by a matrix B, where b1, . . . ,bn are the row
vectors. The determinant of the lattice L is defined as

det(L(B)) =
√

det(BBT ) (2)

The most famous computational problem on lattices is the shortest vector
problem (SVP): Given a basis of a lattice L, find a non-zero vector u ∈ L, such
that ‖ v ‖≥‖ u ‖ for any vector v ∈ L\0. The following is a well-known theorem
on the upper bound of the shortest vector length in lattice L.

Theorem 1. (Minkowski) Any lattice L of rank n contains a non-zero vector v
with

||v|| ≤ (1 + o(1))
√

2n/eπ det(L)
1
n

In many literatures, the theorem is presented with the upper bound
√
ndet(L)

1
n ,

which is a little weaker but free of an additive error term.

2.2 Number of integral points in a sphere

To obtain our results, it is important to have an accurate estimation of the
number of integral points inside of the n-sphere centered at the origin of radius
R. Denote the number by W (n,R). In general, one can approximate W (n,R)
by the volume of the sphere, denoted by V (n,R). This is an application of the
Gaussian Heuristic. However, if the radius of the sphere is small, compared to
the square root of the dimension, then the volume estimate is not very accurate.
More precisely, if the radius of the sphere R ≥ n1/2+ε, the number of integral
points in the sphere is equal to the volume

V (n,R) = (
√
πn+O(1))−1(

√
2πe
n
R)n
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with a small additive error. If R is
√
αn for some small constant α, then the

estimation using volume is not so precise. To see this, note that when α < 1
2πe ,

the volume of the sphere is less than 1, yet it still contains many integral points.
We should use the result found in [14] to estimate W (n,R) for R = O(

√
n):

Proposition 1. Let α be a constant. Then there exists a constant δ, depending
only on α, such that W (n,

√
αn) ≥ eδn for n large enough. Moreover, as α gets

larger, δ is approaching ln(
√

2πeα).

To find δ from α, one defines θ(z) = 1 + 2
∑∞
i=1 z

i2 . Set δ(α, x) = αx +
ln θ(e−x). We can compute δ = minx≥0 δ(α, x). As a comparison between the
number of integral points in a ball and its volume, we have

W (n,
√

0.1n) ≈ e0.394415n, V (n,
√

0.1n) ≈ e0.267645n.

W (n,
√

0.5n) ≈ e1.07246n, V (n,
√

0.5n) ≈ e1.07236n.

For α > 0.5, the difference between log V (n,
√
αn)/n and logW (n,

√
αn)/n is

less than 0.0001. See Table 1 in [14]. We also have

Proposition 2. Let δ be a constant. Then there exists a constant α such that if
an n-sphere centered at the origin contains more than eδn many integral points,
the radius of the sphere must be greater than

√
αn for n large enough. As δ gets

larger, α is approaching e2δ/2πe.

2.3 Kolmogorov complexity

The Kolmogorov complexity of a binary string x, conditional to y, is defined to
be the length of the shortest program that given the input y, prints the string x,
and is denoted by K(x|y). We define K(x) to be K(x|ε), where ε is the empty
string. It turns out that if one switches from one programming language to
another, the Kolmogorov complexity is invariant, up to an additive constant, as
long as both of the programming languages are Turing Universal. The book [12]
gave an excellent introduction to the theory of Kolmogorov complexity.

It can be shown that for any positive integer s, K(s) ≤ log s+O(1). If s = 1n,
the binary string of length n consisting of only 1, then K(s) ≤ log n + O(1).
Similarly if s is the first n binary digits of the number π after the decimal point,
then K(s) ≤ log n+O(1). From the examples, one can see that the Kolmogorov
complexity is a good measure of randomness in a string.

For each constant c, a positive integer x is c-incompressible if K(x) ≥ log(x)−
c. By a counting argument, one can show

Proposition 3. For any y, a finite set A of cardinality m has at least m(1 −
2−c) + 1 elements x with K(x|y) ≥ logm− c.

This observation yields a simple yet powerful proof technique — the incompress-
ibility method.
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3 The main theorem

Theorem 2. Given a random integral lattice L ∈ Rm represented by a matrix
B ∈ Zn×m, let the vector v be the shortest vector of lattice L. Let S denote some
entries in B and B \ S denote the rest of entries in the matrix. Assume that
K(S|v,B \ S) = O(logm). Let R be a positive real number such that

logW (m,R) ≤ K(S|B \ S)− log2(m)

then the shortest vector is longer than R.

Proof. Suppose that the length of the short vectors is less than R. Then

K(v|m) ≤ logW (m,R) +O(1).

On the other hand, to describe S from B \ S, we only need to describe v in
addition to the program which computes S from B \ S and v, so we have

K(S|B \ S) ≤ K(S|v,B \ S) +K(v|m) + 2 logK(S|v,B \ S)
≤ K(v|m) +O(logm)

so K(v|m) ≥ K(S|B \ S)−O(logm), which is a contradiction.

To use the theorem, we select a part S of B such that K(S|B \ S) is large
but K(S|v,B\S) is small, then according to the theorem, we have a good lower
bound on the length of the shortest vectors. In other words, if some part of
the matrix has high Kolmogorov complexity, yet it can be determined (almost)
uniquely by a short vector and the rest of the matrix, then the lattice has long
shortest vectors. The main technical part is to show that K(S|v,B \S) is small.
In some case, it is easy, as in the following remark, but in the case of NTRU
lattices, it is highly non-trivial.

Remark 4. As a simple application of this theorem, we can compute the lower
bound of the shortest vector lengths for the random knapsack lattice introduced
by [11, 6]. A knapsack lattice is spanned by b1, . . . ,bn below:

b1 = (a1, 1, 0, . . . , 0)
b2 = (a2, 0, 1, . . . , 0)

...
bn = (an, 0, 0, . . . , 1),

where a1, a2, · · · , an are integers. We call the lattice random, if a1, a2, · · · , an
are selected uniformly and independently from r-bit integers. Random knapsack
lattices were used by Nguyen and Stehle [16] to assess the performance of LLL
algorithm. Note that if (v0, v1, · · · , vn) is the shortest vector, and assume w.l.o.g.
that v1 6= 0. Then we use a1 as S and apply the main theorem. Through a
routine calculation, we obtain that with probability at least 1 − 1

nr , the length

of the shortest vector in the knapsack lattice La1,a2,··· ,an
is greater than

√
n+1
2πe ·

2
r

n+1 (1 +O( log(nr)
n )), which is not far away from the Gaussian heuristic.
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4 The lower bounds of shortest vectors lengths of NTRU
lattices

In this section, we first describe the NTRU cryptosystems in section 4.1. We
prove a technical lemma in section 4.2 and prove the lower bounds of shortest
vector lengths of NTRU lattices in section 4.3.

4.1 Description of the NTRU cryptosystem

The NTRU algorithm was first introduced by [8] at the rump section of Crypto
96. It operates in the ring of truncated polynomials given by Z[X]/(XN − 1).
To describe the parameters of the NTRU cryptosystem, we begin by choosing a
prime N and two moduli p, q such that gcd(N, p) = gcd(p, q) = 1. Let R, Rp,
and Rq be the convolution polynomial rings

R = Z[x]/(xN − 1), Rp = (Z/pZ)[x]/(xN − 1), Rq = (Z/qZ)[x]/(xN − 1)

For any positive integers d1 and d2, define the set

T (d1, d2) =

a(x) ∈ R :
a(x) has d1 coefficients equal to 1;
d2 coefficients equal to − 1;
has all other coefficients equal to 0


and the set

B(d) =
{
a(x) ∈ R :

a(x) has d coefficients equal to 1;
has all other coefficients equal to 0

}
Let Sf and Sg be some sets of polynomials of degree at most N − 1 and of
very small coefficients. Usually they are set to be T (d1, d2) or B(d3) for d1, d2

and d3 proportional to N . To prevent an exhaustive search attack, |Sf | and |Sg|
have to be large. In fact, there exists a constant γ such that for all the NTRU
implementations, |Sg| > 2γN . It implies that for a randomly chosen polynomial
g, its Kolmogorov complexity is larger than γN . The public parameters are
(N, p, q, Sf , Sg). The private key consists of two randomly chosen polynomials

f(x) =
∑N−1
i=0 fix

i ∈ Sf and g(x) =
∑N−1
i=0 gix

i ∈ Sg

compute

Fq(x) = f(x)−1 in Rq and Fp(x) = f(x)−1 in Rp

then compute
h(x) = Fq(x) ∗ g(x) in Rq (3)

The public key is the polynomial h(x) =
∑N−1
i=0 hix

i. From Equation (3) we can
obtain the relationship

f(x) ∗ h(x) ≡ g(x) in Rq. (4)
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Recall the definition of an NTRU lattice (1). The vector

(f0, f1, · · · , fN−1, g0, g1, · · · , gN−1)

is a very short vector in the lattice. Since usually g(1) = 0 for any g ∈ Sg, so
h(1) = 0 (mod q), thus this lattice has a trivial short vector (1N , 0N ), which can
be shorter than the private key. If we adopt Coppersmith and Shamir’s approach
[5], and use a slightly different lattice of rank 2N − 2:

1− 1/N −1/N · · · −1/N h0 h1 · · · hN−1

−1/N 1− 1/N · · · −1/N hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

−1/N −1/N · · · 1− 1/N h1 h2 · · · h0

0 0 · · · 0 q − q/N −q/N · · · −q/N
0 0 · · · 0 −q/N q − q/N · · · −q/N
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 −q/N −q/N · · · q − q/N


then the short vector (1N , 0N ) is eliminated from the lattice. Coppersmith

and Shamir proved if one can find a sufficiently short vector in the NTRU lattice,
then the short vector gives us an equivalent private key.

4.2 A technical lemma

Let N be a prime and let q > N be a prime power rl. Given a short vector

v = (v1, v2, . . . , v2N ) ∈ Z2N ,

in this section, we prove a lemma concerning the number of solutions in (Z/qZ)N

of the following linear system

h0v1 + hN−1v2 + . . .+ h1vN ≡ vN+1 (mod q)
h1v1 + h0v2 + . . .+ h2vN ≡ vN+2 (mod q)

... (5)
hN−1v1 + hN−2v2 + . . .+ h0vN ≡ v2N (mod q)

Note that if l > 1, Z/qZ is not a field.

Lemma 1. Let N be a prime and let q > N be a prime power rl. Suppose that
r is a primitive root in Z/NZ, and

(v1, v2, · · · , vN ) ∈ ZN

is a non-zero vector whose `2 norm is less than
√
N . Assume that r does not

divide gcd(v1, v2, · · · , vN ). Then there are at most q solutions in (Z/qZ)N for
the linear system (5).

The proof of lemma 1 is given in appendix because of the limit of space.
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4.3 The lower bounds of lengths of shortest vectors of NTRU
lattices

In most implementations of NTRU cryptosystems (See IEEE P1363.1/D12 Draft
Standard for details), q is set to be a power of two, and N is a prime such that 2
has order N − 1 or (N − 1)/2 in (Z/NZ)∗. In this case, the modulo q operation
can be implemented as a bit-wise Boolean operation, thus it is more efficient
than operations of mod primes. In the following theorem, we will assume that
q is a prime power rl and r has order N − 1 in Z/NZ. It covers many NTRU
implementations including that q is a prime and that q is a power of 2.

Theorem 3. Let N be an odd prime. Let q < N2 be a prime power rl. Assume
that r has order N − 1 in (Z/NZ)∗. Suppose

K(h|N, q) ≥ γN

for some constant γ. The length of the shortest vector in LNTRU is greater than√
αN for some constant α depending only on γ.

Proof. Suppose the vector v = (v1, v2, . . . , v2N ) ∈ Z2N is the shortest vector of
LNTRU . Hence it satisfies

gcd(v1, v2, . . . , v2N ) = 1.

If it is (1N , 0N ), then its length is
√
N . Otherwise there exists integers k1, . . . , kN

such that

v =
N∑
i=1

vibi +
N∑
j=1

kjbN+j. (6)

From equation (6), we can obtain the linear system (5). We see that in fact r
does not divide gcd(v1, v2, . . . , vN ). We may assume that (v1, v2, · · · , vN ) is a
nonzero vector whose `2 norm is less than

√
N . We want to solve the linear

system for (h0, h1, · · · , hN−1) ∈ (Z/qZ)N . It follows from Lemma 1 that there
are at most q solutions, hence

K(H|v, LNTRU \H) ≤ log q +O(1) = O(log(2N)).

We also have

K(H|LNTRU \H) = K(h|N, q) +O(1) ≥ γN,

and for some constant α

W (2N,
√
αN) = 2(γ−ε)N ,

by Proposition 2. So by our main theorem R ≥
√
αN .

In many implementations of the NTRU cryptosystem, Sf is set to be T (d+
1, d), Sg is set to be T (d, d), where d is an integer close to bN/3c. In this case,
we calculate α. We first compute a lower bound of the Kolmogorov complexity
of h if g is selected randomly in T (d, d).
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Lemma 2. Assume that d = bβNc for some constant 1/10 < β ≤ 1/2. For an
invertible polynomial f , if we randomly select a polynomial g in T (d, d), then
with probability at least 1− 2−0.1N , we have

K(h|N, q) ≥ γN

for some constant γ, when N is large enough.

Proof. First observe that since f is invertible, we have

|K(g|N, q, f)−K(h|N, q, f)| = O(1),

and
K(h|N, q) ≥ K(h|N, q, f).

The cardinality of the set T (d, d) is(
N

d

)(
N − d
d

)
≥ 2(−2β log β−(1−2β) log(1−2β))N

NO(1)
.

So the lemma follows from Proposition 3 if we take γ = −2β log β − (1 −
2β) log(1− 2β)− 0.1.

Corollary 1. If Sg = T (bN/3c, bN/3c), then with probability greater than 1 −
2−0.1N , the shortest vector in a random NTRU lattice has length greater than√

0.28N .

Proof. By Lemma 2, we can take γ to be 1.48. Then

W (2N,
√

0.14 ∗ 2N) ≈ 21.48N = e0.51∗2N .

Hence R ≥
√

0.28N .

The above corollary shows that with an overwhelming probability, the short-
est vector in a random NTRU lattice is as long as the target vector, up to
a constant factor. Note that if the target vector is the shortest vector, then
R =

√
4d+ 1 ≈

√
4N/3 . It is an interesting open problem to close the gap.

For some instantiations of NTRU variants [1, 17], the polynomial g is chosen
from binary polynomials, and f is in a special form. Note that one can get a
lower bound of the Kolmogorov complexity of g for whatever f is chosen by
counting Sg. Hence if the specific chosen values of q and N meet the condi-
tions in Lemma 1, then we can also get the lower bounds of the shortest vector
lengths of the corresponding NTRU lattices by the same method. We express
the observation in the following corollary:

Corollary 2. If there exists a positive constant γ such that |Sg| > 2γN , then
for any constant 0 < ε < γ, with probability greater than 1− 2−εN , the shortest
vector in a random NTRU lattice has length greater than

√
αN , for a positive

constant α depending only on γ and ε.
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5 Conclusion

In this paper, we propose a general method to bound the lengths of the shortest
vectors in random integral lattices. We obtain that with an overwhelming prob-
ability, the shortest vector length of a random NTRU lattice has length Ω(

√
N),

which is the same as the length of the target vector, up to a constant factor. The
main problem left open by this work is to prove that with a high probability,
the target vector is shortest in a random NTRU lattice.
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A Appendix

Proof of Lemma 1

Proof. Since r is a primitive root modulo N , we have that

(xN − 1)/(x− 1) = xN−1 + xN−2 + · · ·+ 1

is an irreducible polynomial over Fr [13]. To determine the size of the solutions
of (5), We need to study the circulant matrix

V =


v1 vN · · · v2
v2 v1 · · · v3
...

...
. . .

...
vN vN−1 · · · v1

 (7)

Let ω be the N -th primitive root of unit in the algebraic closure of Fr. One can
verify that

V


1
ωi

ω2i

...
ω(N−1)i

 = (v1 + vNω
i + · · ·+ v2ω

(N−1)i)


1
ωi

ω2i

...
ω(N−1)i


for 0 ≤ i ≤ N−1. Thus for some i, if v1 +vNωi+ · · ·+v2ω(N−1)i is not zero, then
it is an eigenvalue of V with the eigenvector (1, ωi, ω2i, · · · , ω(N−1)i). Hence if d
elements in {1, ω, ω2, · · · , ωN−1} are zeros of the polynomial vN +vN−1x+ · · ·+
v1x

N−1, then the rank of V is N − d over Fr [9]. Since v1, · · · , vN can not be all
1, we have ∏

1≤i≤N−1

(v1 + vNω
i + · · ·+ v2ω

(N−1)i)

is a nonzero element in Fr. To solve (5), we first compute the Hermite Normal
Form H of V through a sequence of elementary row transformations. Now we
do a case analysis based on the value of v1 + v2 + · · ·+ vN .

Case 1: If
v1 + v2 + · · ·+ vN 6= 0 (mod r),

then V is non-singular over Fr, thus there is no multiple of r in the diagonal line
of H, we can recover (h0, h1, . . . , hN−1) from v, and there is one unique solution.
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Case 2: If
v1 + v2 + · · ·+ vN = 0 (mod r),

but
v1 + v2 + · · ·+ vN 6= 0,

then V is non-singular over Q but is singular over Fr. Let rt be the largest power
of r which divides v1 + v2 + · · ·+ vN . We have rt ≤ N < q, and rt is the largest
power of r which divides the product of all the diagonal elements in H. The
solution space of (5) has size at most rt < q.

Case 3: In the last case,

v1 + v2 + · · ·+ vN = 0,

the rank of V over Fr is N − 1, and the first N − 1 rows of V are independent
over Fr. Thus the solution space of (5) has size at most q.
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