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Hard Problems of Algebraic Geometry Codes
Qi Cheng

Abstract—The minimum distance is one of the most
important combinatorial characterizations of a code. The
maximum likelihood decoding problem is one of the most
important algorithmic problems of a code. While these
problems are known to be hard for general linear codes,
the techniques used to prove their hardness often rely on
the construction of artificial codes. In general, much less is
known about the hardness of the specific classes of natural
linear codes. In this paper, we show that both problems
are NP-hard for algebraic geometry codes. We achieve this
by reducing a well-known NP-complete problem to these
problems using a randomized algorithm. The family of
codes in the reductions is based on elliptic curves. They
have positive rates, but the alphabet sizes are exponential
in the block lengths.

Index Terms—Algebraic-geometric codes, Complexity
theory, Maximum likelihood decoding.

I. INTRODUCTION

An [n, k]q linear error-correcting code is a linear
subspace of a vector space Fn

q , where Fq denotes the
finite field of q elements, and k denotes the dimension
of the subspace. The Generator Matrix for a linear code
is a k × n matrix, with row rank k which defines a
linear mapping from Fk

q (called the message space) to
Fn

q . Therefore, the code C is:

C = {aG|a ∈ Fk
q}.

We call a vector in C a codeword. The Hamming
Distance between two codewords x and y, is the weight
(number of nonzero coordinates) of x−y. The minimum
distance of a code is the minimum Hamming distance
between any two codewords. If the code is linear, then
the vector x − y is a codeword, and the minimum
distance of the code is equal to the minimum weight
of any codeword.

Given a linear code as input, how hard is it to
compute the minimum distance? This problem had been
open for two decades before it was finally solved by
Vardy in 1997 [15], when he proved that the problem is
NP-complete. Interestingly, determining whether a code
contains a codeword of a given weight was known to
be NP-complete much earlier [3].

Dumer et.al. [5] studied the hardness of approxi-
mating the minimum distance of a linear code. They
showed that the minimum distance of a linear code is
not approximable within any constant factor in random
polynomial time, unless NP=RP. The codes used in
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their work and that of Vardy [15] are artificially de-
signed. Their results exhibit that it is hard to compute
the minimum distance for the general linear codes,
but say nothing specific about any of the well-studied
and widely-deployed codes, such as the Reed-Solomon
codes, the Reed-Muller codes, the BCH codes and the
algebraic geometry codes.

The maximum likelihood decoding problem, is one of
the central problems in algorithmic coding theory. For
any vector y in Fn

q , it asks for a codeword x to minimize
the distance between x and y. Given that a received
word is equally likely to contain an error in any position,
codewords that are closest to the received word (i.e.
differ in fewer coordinates) are most likely to encode
the intended message. This problem is proved to be NP-
hard for general linear codes [3]. Proving NP-hardness
for classes of useful codes is more difficult and subtle.
The only result of this kind known to date is the result
of [7] on the NP-completeness of maximum likelihood
decoding for generalized Reed-Solomon codes, where
the sizes of the alphabets are exponential in the lengths
of the codes. A related result in [4] shows that decoding
of Reed-Solomon codes at certain radius is at least as
hard as discrete logarithm problem over finite fields.

In this paper, we prove that the minimum distance
problem and the maximum likelihood decoding problem
are NP-hard for a natural class of codes, namely,
the algebraic-geometry codes. The algebraic geometry
codes can be seen as a generalization of the Reed-
Solomon codes. While the study of algebraic geome-
try codes began as a purely mathematical pursuit, an
increased understanding of their unique combinatorial
properties promises that they will find real-world appli-
cations in the foreseeable future. In combinatorics, it is
often hard to explicitly construct an object which is, in
certain aspects, better than a random object. A family of
algebraic geometry codes is one of a few bright spots,
where we can explicitly construct a code having more
codewords than a random code given the block length
and the minimum distance. Moreover, given proper
representations, these codes possess a polynomial time
list decoding algorithm [8], which corrects errors well
beyond half of the minimum distance. In contrast, a
random code usually does not have a good decoding
algorithm due to the lack of algebraic structure.

Remark 1: Since any linear code is a weakly alge-
braic geometry code [13], we only consider algebraic
geometry codes in the strict sense in this paper. All of
our results apply to strongly algebraic geometry codes.

Proving the NP-hardness of the maximum likelihood
decoding of algebraic geometry codes (MLDAGC) an-
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swers the most important question about the decodabil-
ity of this class of codes. Proving the NP-hardness of
the minimum distance problem for algebraic geometry
codes (MDPAGC) is also well motivated. The designed
distance, which is a lower bound of the minimum
distance, can be easily obtained from the description
of the codes. Less attention is paid to the problem
of computing the exact minimum distance. Although
minimum distances of Reed-Solomon codes can be
easily computed, our result shows that the minimum
distance problem of algebraic geometry codes are very
hard, even in the case of elliptic codes.

Remark 2: The most interesting family of algebraic
geometry codes has a fixed alphabet. The codes in our
results have alphabets of exponential size. Nonetheless,
we observe that all the known decoding algorithms for
algebraic geometry codes are not sensitive to the size
of the alphabets. Our results indicate that if a polyno-
mial time maximum likelihood decoding algorithm for
algebraic geometry codes does exist, it can only work
for codes with a small alphabet size.

A nice surprise about our proofs is their conceptual
simplicity. We use the subset sum problem directly,
thus all of the results on the preprocessing subset sum
problem can be readily carried over to the preprocessing
maximum likelyhood decoding decoding of algebraic
geometry codes. However our reductions are random-
ized, which we would prefer to avoid. The need for
randomization seems to occur in places where we deal
with number theory and primes.

Our reduction always maps a “Yes” instance to a
“Yes” instance, and maps a “No” instance to a “No”
instance in expected polynomial time. The reductions
in [5] are reverse unfaithful random reductions, which
always maps a “No” instance to a “No” instance, but
with a small probability, maps a “Yes” instance to a
“No” instance.

II. ELLIPTIC CURVES

The Reed-Solomon code of block length n and
dimension k is obtained by evaluating polynomials of
degree k− 1 at a set of n elements in a finite field. For
a linear [n, k]q code, the Singleton bound asserts that
d ≤ n−k+1. The Reed-Solomon codes are optimal, in
that they satisfy the Singleton bound with equality. It is
trivial to read the minimum distance of Reed-Solomon
codes from the block length and the dimension.

Algebraic geometry codes are natural gener-
alizations of the Reed-Solomon codes. Let K
be a function field over a finite field F. Let
A1, A2, · · · , An, B1, B2, · · · , Bm be F-rational places.
Let a1, a2, · · · , an, b1, b2, · · · , bm be positive integers.
Given a divisor A =

∑n
i=1 aiAi −

∑m
i=1 biBi,

define L(A) to be the set of functions with
poles only at A1, A2, · · · , An with multiplicities
at most a1, a2, · · · , an respectively, and with ze-
ros at B1, B2, · · · , Bm with multiplicities at least

b1, b2, · · · , bm respectively. The functions in L(A) form
a linear space over the field F. It has dimension no less
than deg(A)−g+1, where g is the genus of the function
field, and deg(A) =

∑n
i=1 ai−

∑m
i=1 bi. For the divisor

A, we can construct a linear code whose codewords are
obtained by evaluating the functions in L(A) at ratio-
nal places P1, P2, · · · , Pn, where {P1, P2, · · · , Pn} ∩
{A1, A2, · · · , An, B1, B2, · · · , Bm} = ∅. We call the
code algebraic geometric if deg(A) < n. We call it
strongly algebraic geometric if 2g − 2 < deg(A) < n.
The designed distance of the code is n−deg(A). For a
function f in the function field, we denote its divisor by
(f), the pole part of the divisor by (f)∞ and the zero
part of the divisor by (f)0. Hence (f) = (f)0 − (f)∞.

To prove that computing minimum distances of alge-
braic geometry codes is NP-hard, we use codes defined
by curves of genus one, i.e., elliptic curves. We first
review some facts about elliptic curves. An elliptic
curve is a smooth cubic curve. Let F be a field. If the
characteristic of F is neither 2 nor 3, we may assume
that an elliptic curve E is given by an equation

y2 = x3 + ax + b, a, b ∈ F. (1)

The discriminant of this curve is defined as −16(4a3 +
27b2). It is essentially the discriminant of the poly-
nomial x3 + ax + b. It should be non-zero for the
curve to be smooth. For detailed information about
elliptic curves, we refer the reader to Silverman’s book
[14]. The set of F-rational points on the elliptic curve
consists of the solution set over F of the equation plus
a point at infinity, denoted by O. We use E(F) to
denote the group. These points form an abelian group
with the infinity point as the identity. From now on,
we only consider elliptic curves over finite fields Fq of
characteristic greater than 3 and assume that curves are
given in form (1). The following properties of elliptic
curves are relevant to our result.

Proposition 1: [10] Let P1, P2, · · · , Pn, P be ele-
ments in E(Fq) distinct from O. If m1P1 + m2P2 +
· · · + mnPn = P , where mi, 1 ≤ i ≤ n, are
positive integers, then there is a function having zeros
at P1, P2, · · · , Pn, with multiplicities m1,m2, · · · ,mn

respectively, a pole at P with multiplicity 1 and a
pole at O with multiplicity m1 + m2 + · · · + mn − 1.
We can compute the function in time polynomial in
m1 + m2 + · · ·+ mn and log q.

Since (x)∞ = 2O, (y)∞ = 3O, and consequently,
(xi)∞ = 2iO, (xi−1y)∞ = (2i+1)O, we can compute
a basis for L(αO) in polynomial time, and it contains
only monomials. If Q 6= O, can we compute a basis for
L(Q + αO)? Since a basis of L(αO) can be computed
easily, we only need to find a function f ′ ∈ L(Q +
αO) − L(αO). Then f1, f2, · · · , fk−1 and f ′ form a
basis for L(Q+(k−1)O). It is fairly easy to find such a
function. We can simply pick one point Q′ 6∈ {Q,O} in
randomized polynomial time, and then compute Q′′ =
Q−Q′. Let l1 be the line passing through Q′ and Q′′,
let l2 be the line passing through Q and −Q. We then
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set f ′ = l1/l2. Note that (f ′) = Q′ + Q′′ + (−Q) −
O −Q− (−Q) = Q′ + Q′′ −O −Q. In conclusion:

Proposition 2: There exists a randomized algorithm
to find a base of L(αO) and L(Q + αO) in time
polynomial in α and log q.

Proposition 3: Let A be a divisor. If deg(A) ≥ 1,
then dimension of L(A) is deg(A).

Proposition 4: q−2
√

q+1 ≤ |E(Fq)| ≤ q+2
√

q+1.
Lenstra [11] showed that the order of a random

elliptic curve over Fq is distributed almost uniformly
in the range [q − 2

√
q + 1, q + 2

√
q + 1]. Heath-Brown

[9] showed that for most of q, there are many primes in
the range [q− 2

√
q +1, q +2

√
q +1]. Combining these

two celebrated results, we have
Proposition 5: [6] Given a positive integer N , there

is a randomized algorithm finding a prime p > N , an
elliptic curve over Fp and a point G on the curve which
has a prime order greater than N . The algorithm runs
in expected time polynomial in log N .

It seems hard to derandomize the above algorithm.
In fact, even an efficient deterministic algorithm to find
a prime bigger than a given number is not known. The
problem was listed as open in [1]. On the other hand,
once the prime, the curve and the point are found,
we can test in deterministic polynomial time that they
satisfy the requirements. For practical purposes, there
is an efficient method based on the theory of complex
multiplication to construct an elliptic curve of a given
order.

III. THE NP-HARDNESS PROOF OF THE MDPAGC

We reduce the following well known subset sum
problem to the problem of computing minimum dis-
tances of algebraic geometry codes.

Instance: A set A = {a1, a2, a3, · · · , an} of n posi-
tive integers, a positive integer b and a positive
integer k < n.

Question: Is there a nonempty subset
{ai1 , ai2 , · · · , aik

} ⊆ A of cardinality k
such that

ai1 + ai2 + · · ·+ aik
= b.

First we prove that an elliptic curve version of the
problem is NP-hard.

Lemma 1: The following problem (elliptic curve
subset sum problem) is NP-hard:

Instance: A prime p, an elliptic curve C over Fp, a
set of points A = {P1, P2, P3, · · · , Pn, Q} on
the curve and a positive integer k < n.

Question: Is there a nonempty subset
{Pi1 , Pi2 , · · · , Pik

} ⊆ A of cardinality
k such that

Pi1 + Pi2 + · · ·+ Pik
= Q

Proof: We reduce the subset sum problem to this
one. Denote a1 +a2 +a3 + · · ·+an +b by N . Applying
Proposition 5, we find a prime p > N, an elliptic curve

over Fp and a point G on the curve of prime order
q > N in randomized polynomial time. Then set

Q = bG, P1 = a1G, P2 = a2G, · · · , Pn = anG.

We have that

Pi1 + Pi2 + · · ·+ Pik
= Q,

if and only if

ai1 + ai2 + · · ·+ aik
≡ b (mod q),

if and only if

ai1 + ai2 + · · ·+ aik
= b.

Theorem 1: Given an instance of the elliptic curve
subset sum problem, we can in randomized polynomial
time, construct an algebraic geometry [n, k]p code with
p = O(q2) such that if the answer to the elliptic
curve subset sum problem is “YES”, then the code has
minimum distance n − k. If the answer to the prime
field subset sum problem is “NO”, then the code has
minimum distance n− k + 1.

Proof: Given an instance of elliptic curve subset
sum problem, we consider an algebraic geometry code
generated by evaluating functions in L(Q+(k−1)O) at
P1, P2, · · · and Pn. By the Singleton bound, we know
that the minimum distance is at most n − k + 1. This
code has designed distance n − k, thus the minimum
distance is at least n− k. Let f1, f2, · · · , fk be a basis
of L(Q + (k − 1)O), the generator matrix of the code
is 

f1(P1) f1(P2) . . . f1(Pn)
f2(P1) f2(P2) . . . f2(Pn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fk(P1) fk(P2) . . . fk(Pn)


The parameters of the code can be computed in ran-
domized polynomial time by Proposition 2.

If there exists a subset {Pi1 , Pi2 , · · · , Pik
} ⊆

{P1, P2, · · · , Pn} such that Pi1 + Pi2 + · · ·+ Pik
= Q

in E(Fp). Then there exists a function f having zeros
at Pi1 , Pi2 , · · · , Pik

with single multiplicity, a pole
at Q with single multiplicity, and a pole at O with
multiplicity k − 1. We have f ∈ L(Q + (k − 1)O).
Such a function is unique up to a constant factor. The
codeword corresponding to f has weight n−k, because
it has k zeros in {P1, P2. · · · , Pn}. Hence the minimum
distance of the code is n− k.

In the other direction, if the minimum weight of
the codewords is n − k, there exists a function f ∈
L(Q + (k − 1)O) that has zeros at k many points
in P1, P2, · · · , Pn. Denote them by Pi1 , Pi2 , · · · , Pik

.
Since it can have no more than k poles, counting
multiplicities, it must have exactly k zeros, and all the
zeros have single multiplicity. Thus it must have exactly
k poles as well. It has a pole at Q with multiplicity 1
and a pole at O with multiplicity k − 1. That is to say
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(f) = Pi1 + Pi2 + · · ·+ Pik
−Q− (k− 1)O. Hence in

E(Fp)
Pi1 + Pi2 + · · ·+ Pik

= Q.

Corollary 1: If there is a polynomial time Las Vegas
algorithm to compute the minimum distance of an
algebraic geometry code, then NP ⊆ ZPP . If there
is a polynomial time randomized algorithm to compute
the minimum distance of an algebraic geometry code,
then NP ⊆ RP .

Corollary 2: Deciding whether an algebraic geom-
etry code is maximum distance separable is NP-hard
under a randomized reduction.

IV. A TIME COMPLEXITY LOWER BOUND FOR
COMPUTING THE MINIMUM DISTANCE

For the above analysis, it is easy to see that we can in
time 2n(log q)O(1) compute the minimum distance of an
elliptic [n, k]q code. Does there exist a better algorithm?
If a problem is NP-hard, we do not expect to find an
algorithm solving it in polynomial time, not even in
subexponential time. However, for NP-hard problems,
sometimes we can find exponential algorithms beating
the trivial exhaustive search. What can we do in the case
of the minimum distance problem of algebraic geometry
codes? We can ask the same question for general linear
codes as well: can we compute the minimum distance
in time 2cn(log q)O(1) for some small c?

Ajtai et.al. [2] have studied the problem. They pro-
posed an algorithm that solves the problem in time
2O(n) if the field size is bounded by a polynomial in n.
The exact constant hidden in big-O is not calculated in
their paper.

The elliptic curve discrete logarithm problem
(ECDLP) is to compute l such that Q = lP , given
P,Q ∈ E(Fq). It is assumed in the elliptic curve
cryptography that there is no algorithm which runs in
time qc for c < 1/2 to solve ECDLP in Fq. But it
is not believed to be NP-hard. Since it is obviously
an NP-easy problem, there must exist a randomized
polynomial time reduction from the ECDLP to any NP-
hard problem, including the minimum distance problem
of an algebraic geometry code. In this section, we
present a succinct reduction. We reduce ECDLP over
Fq to the problem of computing the minimum distance
of algebraic geometry [n, k]q codes, where n ≤ blog qc.
The reduction gives rise a lower bound on the time
complexity of computing the minimum distance of
linear codes under a cryptographic hardness assumption.

Theorem 2: For any constant c > 0, if there is an
algorithm which in expected time 2cn(log q)O(1) com-
putes the minimum distance of any linear [n, k]q code,
then the ECDLP over Fq can be solved in expected time
qc.

Proof: Suppose that we need to compute the dis-
crete logarithm of Q base P on elliptic curve E(Fq).

W.l.o.g, we assume that P has a prime order p. Note
that we must have p ≤ q + 1− 2

√
q by Proposition 4.

Denote the largest even number which is not bigger
than blog pc by n. Randomly select a positive integer
r < p, compute R = rQ. With probability

(
n

n/2

)
/2n >

1/nO(1), the discrete logarithm of R is an integer that
when written in binary, has exactly n/2 ones and n/2
zeros.

Now consider the code C generated by evaluating
functions in L(R + (n/2 − 1)O) at P0 = P, P1 =
2P, P2 = 22P, · · · , Pn−1 = 2n−1P . The minimum
distance of the code is n/2 iff R can be written as
a sum of n/2 points from P0, P1, · · · , Pn−1. Denote
the set of these n/2 points by D. Let Ci be the code
generated by evaluating functions in L(R+(n/2−1)O)
at P0, P1, · · · , Pi−1, Pi+1, · · · , Pn−1. We can find D
by asking the question where the minimum distance
of Ci, for 1 ≤ i ≤ n, is n/2. Basically, Pi ∈ D
iff the answer for Ci is “No”. Assume that we find
D = {Pi1 , Pi2 , · · · , Pin/2}. Then

logP R =
∑

1≤j≤n/2

2ij .

Hence logP Q = r−1 logP R (mod p). The discrete
logarithm of Q base P is solved.

V. THE MAXIMUM LIKELIHOOD DECODING FOR
AG-CODES IS NP-HARD

The dimension of linear space L((k − 1)O) over
Fp is k − 1 for an elliptic curve E. The dimension
of linear space L(Q + (k − 1)O), Q 6= O, is k. Let
f1, f2, · · · , fk−1 be a basis for L((k− 1)O), and f ′ be
a function in L(Q + (k − 1)O) − L((k − 1)O). They
can be founded quickly by Proposition 2.

Lemma 2: Consider the code generated by evaluating
functions in L((k − 1)O) at P1, P2, · · · , Pn. Suppose
the received word is R = (f ′(P1), f ′(P2), · · · , f ′(Pn)),
where f ′ is defined above. Then

1) the distance from R to the code is either n−k+1
or n− k

2) the distance from R to the code is n− k iff there
is a subset {Pi1 , · · · , Pik

} of {P1, P2, · · · , Pn}
such that

Pi1 + Pi2 + · · ·+ Pik
= Q

Proof:
It is clear that R is not a codeword, since if f ′ ∈

L(Q + (k − 1)O) takes the same values as a function
in L((k− 1)O) at n distinct points, it must be equal to
the function, but f ′ has a pole at Q.

If the distance is less than n− k, it means that there
is a function f ∈ L((k − 1)O) such that f ′ − f has
more than k distinct zeros in {P1, P2, · · · , Pn}. But
f ′− f ∈ L(Q + (k− 1)O), which has at most k poles.
A contradiction.

If the distance from R to the code is n − k, there
is a function f ∈ L((k − 1)O) such that f ′ − f has k



5

distinct zeros. Let them be Pi1 , · · · , Pik
. The function

f ′− f must have a pole at Q with multiplicity 1 and a
pole at O with multiplicity k − 1. Therefore, we have
(f ′−f) = Pi1 + · · ·+Pik

−Q−(k−1)O and in E(Fp)

Pi1 + · · ·+ Pik
= Q.

In the other direction, if there is a subset Pi1 , · · · , Pik

of P1, P2, · · · , Pn such that

Pi1 + Pi2 + · · ·+ Pik
= Q

This implies that there is a function g such that

(g) = Pi1 + · · ·+ Pik
−Q− (k − 1)O.

It is clear that g ∈ L(Q+(k− 1)O), thus g = f + af ′,
where f ∈ L((k − 1)O) and a ∈ F∗p. The vector R is
at distance n− k away from the codeword obtained by
evaluating the function −f/a at P1, P2, · · · , Pn.

To prove that the distance is at most n − k + 1,
compute P ′ = Q − P1 − P2 − · · · − Pk−1. If P ′ ∈
{Pk, Pk+1, · · · , Pn}, then we have shown that the dis-
tance from R to the code is n − k. Assume that it is
not the case. Then there exists a function g′ such that

(g′) = Pi1 + · · ·+ Pik−1 + P ′ −Q− (k − 1)O.

Since g′ ∈ L(Q+(k−1)O), we have that g′ = af ′+f
for some f ∈ L((k−1)O) and a ∈ F∗p. This shows that
the distance from R to the code is at most n − k + 1.

Theorem 3: Given a received vector, computing the
distance from the vector to an elliptic code is NP-hard
under a randomized reduction. Therefore, the maximum
likelihood decoding problem for algebraic geometry
codes is NP-hard under a randomized reduction.

Proof: Given an instance of the elliptic curve
subset sum problem, let f ′ be a function in L(Q+(k−
1)O)−L((k−1)O). Now consider an algebraic geom-
etry code generated by evaluating functions in L((k −
1)O) at P1, P2, · · · , Pn. According to Lemma 2, the an-
swer to the elliptic curve subset sum instance is “Yes”,
iff the distance from R = (f ′(P1), f ′(P2), · · · , f ′(Pn))
to the code is n− k.

The preprocessing maximum likelyhood decoding
problem asks whether there exist polynomial time max-
imum likelyhood decoding algorithms dependent on
the codes. Applying the result about the preprocessing
subset sum problem [12], we get

Corollary 3: There is a sequence of algebraic ge-
ometry codes C1, C2, · · · , Ci, · · · , where Ci ∈ [i, k]qi ,
such that the existence of polynomial size circuits which
solve their maximum likelihood decoding problems
implies that NP ⊆ P/poly.

VI. CONCLUDING REMARKS

In this paper, we prove that computing minimum
distances and the maximum likelihood decoding are
NP-hard for algebraic geometry codes. Our results rule

out the possibility of polynomial time solutions for these
two problems, unless NP = ZPP .

The Reed-Solomon codes can be thought of as a spe-
cial case of algebraic geometry codes, in which we use
the rational function field. Let O be the infinity point on
the projective line. The functions 1, x, x2, · · · , xk form
a basis for L(kO). In [4], the authors study Hamming
balls centered at the vectors (r(x)/h(x))x∈Fq

, where
r and h are polynomials, in order to prove that the
bounded distance decoding for the Reed-Solomon codes
is hard. The function f(x)/h(x) has poles at a point
other than O. In the proof of Lemma 2, we use f ′

to generate a received word, it has poles at a place
other than O. We suspect that further exploration of this
connection between rational functions with a different
pole and decoding problems would prove fruitful.

Our results use algebraic geometry codes based on
elliptic curves. In many ways, the elliptic codes are
very similar to the Reed-Solomon codes. Intuitively we
expect that the decoding problem for elliptic codes is the
easiest among all algebraic geometry codes. We leave
it as an open problem to prove that both problems are
NP-hard for codes based on curves of any fixed genus.
We conjecture that the maximum likelihood decoding is
NP-hard even for a family of algebraic geometry codes
with a fixed alphabet, and leave it as an open problem.
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