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Abstract

The zero testing and sign determination problems of
real algebraic numbers of high extension degree are im-
portant in computational complexity and numerical anal-
ysis. In this paper we concentrate on sparse cyclotomic
integers. Given an integer n and a sparse polynomial
f(x) = ckxek + ck−1x

ek−1 + · · · + c1x
e1 over Z, we

present a deterministic polynomial time algorithm to de-
cide whether f(ωn) is zero or not, where ωn denotes the
n-th primitive root of unity e2π

√
−1/n. All previously known

algorithms are either randomized, or do not run in poly-
nomial time. As a side result, we prove that if n is free of
prime factors less than k + 1, there exist k field automor-
phisms σ1, σ2, · · · , σk in the Galois group Gal(Q(ωn)/Q)
such that for any nonzero integers c1, c2, · · · , ck and for
any integers 0 ≤ e1 < e2 < · · · < ek < n, there ex-
ists i so that |σi(ckωek

n + ck−1ω
ek−1
n + · · · + c1ω

e1
n )| ≥

1/2(k2 log n+k log k).

1 Introduction

In computational geometry and numerical analysis, we
often need to know whether an algebraic number is zero or
not. Furthermore, in case that a nonzero algebraic number is
real, we sometimes need to determine its sign. We can usu-
ally compute the decimal expansion of the algebraic number
up to a polynomial precision in polynomial time. The zero
testing problem or sign determination problem become non-
trivial if the algebraic number has high extension degree and
its absolute value may be too small. These two problems are
closely related to fundamental questions in computational
complexity such as polynomial identity testing [4].

A cyclotomic integer can be represented as f(ωn), where
f is an integral polynomial. We call a cyclotomic integer
sparse if f is given in its sparse representation. Can we de-
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cide in polynomial time whether a sparse cyclotomic integer
is zero or not? In the other words, can we decide whether
the primitive n-th root of unity ωn is a root of f(x) in time
polynomial in log n and size of the sparse representation of
f(x)? Note that f(ωn) is zero iff Φn(x)|f(x), where Φn(x)
is the n-th cyclotomic polynomial. The number of nonzero
terms in Φn(x) can be exponential in log n, thus it may not
be possible to write it down. Nonetheless the zero testing
problem of cyclotomic integers was proved to be in co-NP
in [8, Theorem 4.3]. An algorithm to solve the problem was
proposed recently [6, Theorem 3], whose time complexity
is exponential in number of prime factors of n, thus if n has
many distinct small prime factors then the algorithm does
not run in polynomial time. In addition, the algorithm as-
sumes that the prime factorization of n is known.

Even though the degree of a sparse integral polynomial
f(x) can be very high, we can approximately compute the
decimal expansion of f(ωn) up to any precision in time
polynomial in the input size and the precision by using Tay-
lor series

ωd
n = e2dπ

√
−1/n =

∞∑
i=0

1
i!

(
2dπ
√
−1

n
)i

for each term of f(ωn). What is the the smallest possible
absolute value of a nonzero sparse cyclotomic integer? De-
fine

r(k, n,m) = min
{
|

k∑
i=1

ciω
ei
n |

∣∣∣ ci ∈ Z,

|ci| ≤ m, 0 ≤ ei < n,

k∑
i=1

ciω
ei
n 6= 0

}
.

If we can bound − log r(k, n,m) from above by a poly-
nomial function in k, log n and log m, then we can solve
the zero testing problem in polynomial time. For any
σ ∈ Gal(Q(ωn)/Q), |σ(f(ωn))| ≤ km. If f(ωn) is not
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zero, we have

|Norm(f(ωn))| =
∏

σ∈Gal(Q(ωn)/Q)

|σ(f(ωn))| ≥ 1. (1)

Thus |f(ωn)| ≥ 1/(km)φ(n), where φ is Euler’s phi func-
tion. This means that r(k, n,m) ≥ 1/(km)φ(n), which is
known as the root separation bound. If the bound is close
to be tight, it seems that we need exponential precision, i.e.
φ(n) log(km) = Ω(n log(km)/ log log n), to tell whether
a real sparse cyclotomic integer is zero or not. Numerical
evidence suggests that the root separation bound is too pes-
simistic for sparse cyclotomic integers. However there is
no significant improvement on the bound of r(k, n,m) in
recent years.

Definition 1 The sparseness of a polynomial is the number
of its nonzero terms. The height of an integral polynomial
is the maximum absolute value of its coefficients. For an in-
tegral polynomial f , we use sps(f) to denote its sparseness
and use ht(f) to denote its height.

On the other hand, from the inequality (1) we can also
conclude that absolute values of most of the conjugates of
a nonzero f(ωn) are not too small. In fact, it can be shown
that if we randomly select an element σ ∈ Gal(Q(ωn)/Q),
then with probability at least 1/2, |σ(f(ωn))| ≥ 1/km. So
we can solve zero testing of sparse cyclotomic integers in
randomized polynomial time. This idea has been used in
[4, 3] to design randomized algorithm for polynomial iden-
tity testing and zero-test of expressions involving roots of
rationals.

If f(ωn) is known to be a real number, can we decide
whether it is positive or negative? This is called sign deter-
mination problem of sparse real cyclotomic integers. The
sign determination problem appears to be much harder than
the zero testing problem for many types of algebraic num-
bers. The most famous one is the sum of square roots prob-
lem [7, 5], which asks to determine the sign of

√
a1 + · · ·+

√
ak −

√
b1 − · · · −

√
bk (2)

where ai and bi are positive integers. It is still open whether
the problem is in NP or not, even in the case when ai’s and
bi’s are bounded from above by a polynomial function on k.
This type of problems have attracted attentions recently and
they belong to the so called generic task of numerical anal-
ysis [1]. We comment that the zero testing problem of sum
of square roots can be solved in deterministic polynomial
time [2].

1.1 Our results

In this paper, we present the first deterministic polyno-
mial time algorithm to test whether a sparse cyclotomic in-
teger is zero or not. Our algorithm does not need to know

the large prime factors of n, which may be hard to find. First
observe that if n is a prime and f(x) is a nonzero integral
polynomial of sparseness less than n, then f(ωn) cannot be
zero. This fact can be derived from the following Cheb-
otarev theorem.

Proposition 1 If n is a prime, then any minor of the matrix
(ωij

n )1≤i,j≤n is not zero.

There are many proofs of the Chebotarev theorem. For
an elementary one, see [9]. By studying selected minors of
the matrix (ωij

n )1≤i,j≤n when n is not a prime, we show
that if f is a nonzero integral polynomial and all the prime
factors of n are greater than sps(f), then the cyclotomic
integer f(ωn) can not be zero. If n has small prime fac-
tors, then from a sparse cyclotomic integer f(ωn), our al-
gorithm produces a list of sparse cyclotomic integers in
smaller field, such that f(ωn) is zero iff all the elements
in the list are zero. The algorithm applies the procedure
recursively on each cyclotomic integer in the list until we
reach a field where the zero testing problem can be easily
solved. The recursion can have many recursive levels. As
the recursion goes deeper, the number of cyclotomic inte-
gers increases, and in some cases, the sum of their sparse-
ness also increases, nonetheless we are able to show that the
algorithm runs in polynomial time.

One can find an element σ in Gal(Q(ωn)/Q) in random-
ized polynomial time such that |σf(ωn)| is not too small
whenever f(ωn) is not zero, but can we derandomize the
procedure? We answer it affirmatively in Section 4 when
the prime factors of n are all greater than sps(f). For other
n’s, this problem is likely to be harder than the derandom-
ization of zero testing problem. From the numerical evi-
dence, it is reasonable to conjecture that |f(ωn)| is not too
small whenever f(ωn) is not zero and f is sparse. If the
conjecture is true, then the sign determination problem of
real sparse cyclotomic integer can be settled. We believe
that finding a large conjugate in deterministic polynomial
time is the first step towards proving the conjecture.

It has been proved that all abelian number fields are sub-
fields of cyclotomic fields. For example, for a prime p, the
square of the principle Gaussian sum

∑p−1
i=1 ( i

p )ωi
p is p or

−p. Hence
√

p ∈ Q(ω4p). Applying this observation, we
can write (2) as sum of at most

∑k
i=1 ai +

∑k
i=1 bi many t-

th roots of unity, where t|(4
∏k

i=1 ai

∏k
i=1 bi). As a result,

we obtain a sparse cyclotomic integer, assuming that ai’s
and bi’s are bounded from above by a polynomial function
on k. This means that we convert the problem of comparing
sums of square roots to the sign determination problem of
sparse cyclotomic integers when ai’s and bi’s are small. We
believe that cyclotomic integers provide a uniform platform
to study the problem of zero testing and sign determination
of algebraic integers.
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2 Key lemmas for derandomization

It is well known that the ring of integers in cyclotomic
field Q(ωn) consists of all the elements in Z[ωn]. The field
automorphism of Q(ωn) is isomorphic to (Z/nZ)∗. For an
integer i ∈ (Z/nZ)∗, let σ(i) denote the field automorphism
which sends ωn to ωi

n. Then for any integral polynomial f ,
we have

σ(i)(f(ωn)) = f(ωi
n).

First we prove a general lemma

Lemma 1 Let E be a subfield of F . Let α1, α2, · · · , αk

be elements in F . If there exist k field automorphisms
σ1, σ2, · · · , σk ∈ Gal(F/E) such that the matrix

V =


σ1(α1) σ1(α2) · · · σ1(αk)
σ2(α1) σ2(α2) · · · σ2(αk)

...
...

. . .
...

σk(α1) σk(α2) · · · σk(αk)


is nonsingular, then α1, α2, · · · , αk are linearly indepen-
dent over E .

Proof: Suppose that α1, α2, · · · , αk are linearly depen-
dent over E. Then there exist a1, a2, · · · , ak ∈ E such
that

∑k
i=1 aiαi = 0 and ai 6= 0 for at least one i. Hence

σj(
∑k

i=1 aiαi) =
∑k

i=1 aiσj(αi) = 0 for all 1 ≤ j ≤ k.
This means that the vectors

σ1(α1)
σ2(α1)

...
σk(α1)

 ,


σ1(α2)
σ2(α2)

...
σk(α2)

 , · · · ,


σ1(αk)
σ2(αk)

...
σk(αk)


are linearly dependent over E ⊆ F . Thus the matrix V is
singular, which leads to a contradiction. 2

Let k be positive integers and f be an integral polyno-
mial given in sparse form with sps(f) = k. Write n =
pβ1
1 pβ2

2 · · · p
βl

l r, where p1, p2, · · · , pl are distinct primes
less than k +1 and r is free of prime factors less than k +1.
Note that it may be hard to factor r. As observed in [8, 6],
f(ωn) = 0 iff

xn − 1 divides f(x)
∏
p|n

(xn/p − 1).

If the expansion of the latter polynomial has a short sparse
representation, then we can check quickly whether xn −
1 divides it or not by replacing xe in the expansion with
xe mod n and testing whether we have a zero polynomial
or not. Thus if r = 1 and l ≤ 2, then we can solve the zero
testing problem of cyclotomic integers efficiently.

For q ∈ {p1, p2, · · · , pl, r}, since ωe
n = ωaq+b

n =
(ωq

n)aωb
n where a and b are quotient and remainder respec-

tively of division of e by q, we can write f(ωn) in the fol-
lowing form

gt(ωq
n)ωet

n + gt−1(ωq
n)ωet−1

n + · · ·+ g1(ωq
n)ωe1

n (3)

such that exponents et, et−1, · · · , e1 fall in t different
classes modulo q, and gi(x)’s are sparse polynomials. We
divide the zero testing problem of (3) into three cases:

1. gcd(q, n/q) = 1 and t < q, which includes the case
that q = r; or

2. gcd(q, n/q) = 1 and t = q, which implies that q is a
prime; or

3. gcd(q, n/q) > 1, which implies that q2|n.

Each case will be handled by one of the following lemmas.

Lemma 2 If t < q and gcd(q, n/q) = 1, then the cyclo-
tomic integer (3) is zero iff gi(ωn/q) is zero for all 1 ≤ i ≤ t.

Proof: We shall show that ωe1
n , ωe2

n , · · · , ωet
n are linearly

independent over Q(ωq
n) = Q(ωn/q). For 1 ≤ i ≤ t,

set si = 1 + (i − 1)Tn/q, where T is an integer that
is congruent to (n/q)−1 (mod q). Since for every i, si

mod n/q = 1 and si mod q = i < q, so gcd(si, n) = 1
and σ(si) ∈ Gal(Q(ωn)/Q), which fixes Q(ωn/q). We
only need to prove the matrix V

=


σ(s1)(ωe1

n ) σ(s1)(ωe2
n ) · · · σ(s1)(ωet

n )
σ(s2)(ωe1

n ) σ(s2)(ωe2
n ) · · · σ(s2)(ωet

n )
...

...
. . .

...
σ(st)(ωe1

n ) σ(st)(ωe2
n ) · · · σ(st)(ωet

n )



=


ωe1s1

n ωe2s1
n · · · ωets1

n

ωe1s2
n ωe2s2

n · · · ωets2
n

...
...

. . .
...

ωe1st
n ωe2st

n · · · ωetst
n
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is nonsingular. In fact, det(V )

= (
t∏

i=1

ωei
n )×∣∣∣∣∣∣∣∣∣∣

ω
e1(s1−1)
n ω

e2(s1−1)
n · · · ω

et(s1−1)
n

ω
e1(s2−1)
n ω

e2(s2−1)
n · · · ω

et(s2−1)
n

...
...

. . .
...

ω
e1(st−1)
n ω

e2(st−1)
n · · · ω

et(st−1)
n

∣∣∣∣∣∣∣∣∣∣
= (

t∏
i=1

ωei
n )×∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

ω
e1T n

q
n ω

e2T n
q

n · · · ω
etT n

q
n

...
...

. . .
...

ω
e1(t−1)T n

q
n ω

e2(t−1)T n
q

n · · · ω
et(t−1)T n

q
n

∣∣∣∣∣∣∣∣∣∣∣
where the matrix in the last line is Vandermonde. Hence

det(V ) =
t∏

i=1

ωei
n

∏
1≤i<j≤t

(ωejTn/q
n − ωeiTn/q

n ).

If ej 6≡ ei (mod q), then ejTn/q 6≡ eiTn/q (mod n).
Hence det(V ) 6= 0 and ωe1

n , ωe2
n , · · · , ωet

n are linearly inde-
pendent over Q(ωn/q) by Lemma 1.

2

Remark: The lemma implies that if n is free of prime
factors less than k + 1, then (3) cannot be zero.

Lemma 3 If q2|n, then the cyclotomic integer (3) is zero iff
gi(ωn/q) is zero for all 1 ≤ i ≤ t.

Proof: For 1 ≤ i ≤ t, we define ui to be 1 + (i −
1)n/q. Since for any prime dividing n, it must divide (i −
1)n/q, we have that gcd(ui, n) = 1. It is easy to see that
σ(ui) fixes Q(ωn/q). Just like what we do in the proof of
Lemma 2, we compute the determinant of the matrix W =

(σ(ui)
n (ωej

n ))1≤i,j≤t∣∣∣∣∣∣∣∣∣
ωe1u1

n ωe2u1
n · · · ωetu1

n

ωe1u2
n ωe2u1

n · · · ωetu2
n

...
...

. . .
...

ωe1ut
n ωe2ut

n · · · ωetut
n

∣∣∣∣∣∣∣∣∣
= (

t∏
i=1

ωei
n )×∣∣∣∣∣∣∣∣∣∣

ω
e1(u1−1)
n ω

e2(u1−1)
n · · · ω

et(u1−1)
n

ω
e1(u2−1)
n ω

e2(u2−1)
n · · · ω

et(u2−1)
n

...
...

. . .
...

ω
e1(ut−1)
n ω

e2(ut−1)
n · · · ω

et(ut−1)
n

∣∣∣∣∣∣∣∣∣∣
= (

t∏
i=1

ωei
n )×

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

ω
e1n

q
n ω

e2n
q

n · · · ω
etn

q
n

...
...

. . .
...

ω
(t−1)e1n

q
n ω

(t−1)e2n
q

n · · · ω
(t−1)etn

q
n

∣∣∣∣∣∣∣∣∣∣
where we need to compute the determinant of a Vander-
monde matrix in the last line. Hence

det(W ) =
t∏

i=1

ωei
n

∏
1≤i<j≤t

(ωejn/q
n − ωein/q

n ).

If ej 6≡ ei (mod q), then ejn/q 6≡ ein/q (mod n). Hence
det(W ) 6= 0 and ωe1

n , ωe2
n , · · · , ωet

n are linearly indepen-
dent over Q(ωn/q) by Lemma 1.

2

The remaining case is that t = q is a prime
and gcd(q, n/q) = 1. In this case, the q integers
n/q, 2n/q, · · · , (q − 1)n/q and n fall in different classes
modulo q, so we can rewrite (3) in the form

g̃1(ωq
n)ωn/q

n + g̃2(ωq
n)ω2n/q

n + · · ·
+g̃q−1(ωq

n)ω(q−1)n/q
n + g̃q(ωq

n) (4)

Lemma 4 If q is a prime and gcd(q, n/q) = 1, then the
cyclotomic integer (4) is zero iff g̃1(ωn/q) = g̃2(ωn/q) =
· · · = g̃q(ωn/q).

Proof: We have that

1 + ωn/q
n + ω2n/q

n + · · ·+ ω(q−1)n/q
n = 0.

Hence 1 = −ω
n/q
n − ω

2n/q
n − · · · − ω

(q−1)n/q
n . Plug it into

(4), we obtain

(g̃1(ωq
n)− g̃q(ωq

n))ωn/q
n +

(g̃2(ωq
n)− g̃q(ωq

n))ω2n/q
n +

· · ·+ (g̃q−1(ωq
n)− g̃q(ωq

n))ω(q−1)n/q
n . (5)
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Lemma 2 implies that (5) is zero iff g̃i(ωq
n) − g̃q(ωq

n) = 0
for all 1 ≤ i ≤ q − 1. That is equivalent to

g̃1(ωn/q) = g̃2(ωn/q) = · · · = g̃q(ωn/q).

2

3 Algorithm and time complexity analysis

Based on the lemmas in the previous section, we shall
take a divide-and-conquer approach to design a zero test-
ing algorithm for sparse cyclotomic integers. To guaran-
tee polynomial time complexity, when Lemma 4 applies,
we pick the g̃M (x) with fewest number of nonzero terms
among all g̃i(x)’s in (4), and test whether g̃i(ωn/q) −
g̃M (ωn/q) equals to zero for all i 6= M , 1 ≤ i ≤ q. The al-
gorithm is described in Figure 1, whose inputs consist of an
integral polynomial f(x) given in sparse form and an inte-
ger n. The degree of f is less than n. The algorithm outputs
“Yes” if f(ωn) = 0. Otherwise it outputs “No”.

Theorem 1 The algorithm zerotesting(f(x), n) runs in
time poly(k, log n, log m), where k is the sparseness of
f(x) and m is the height of f(x).

The following lemma is useful in proving the theorem.

Lemma 5 Let t ≥ 4 be a positive integer. Let a1 ≤ a2 ≤
· · · ≤ at be positive integers. Then

1. (
∑t

i=1 ai)2 >
∑t

i=1 a2
i ;

2. (
∑t

i=1 ai)2 >
∑t

i=2(ai + a1)2;

Proof: The first inequality is trivial. For the second one,
we have

(
t∑

i=1

ai)2 −
t∑

i=2

(ai + a1)2

=
t∑

i=1

a2
i +

∑
1≤i<j≤t

2aiaj

−
t∑

i=2

a2
i − (t− 1)a2

1 −
t∑

i=2

2a1ai

=
∑

2≤i<j≤t

2aiaj − (t− 2)a2
1

> 0

2

Now we are ready to prove Theorem 1.
Proof: This algorithm is recursive. There are at most∑l
i=1 βi +1 many recursive levels. For 1 ≤ i ≤

∑l
i=1 βi +

1. If f(x) is a zero polynomial, then return “Yes”.

2. Let k be the sparseness of f(x). Write n =
pβ1
1 pβ2

2 · · · p
βl

l r, where p1, p2, · · · , pl are primes
less than k + 1 and r does not have prime factors
less than k + 1.

3. If r = 1 and l ≤ 2, then if

(xn − 1)|f(x)
∏
p|n

(xn/p − 1),

return “yes”, else return “no”.

4. Let q = max{p1, p2, · · · , pl, r}. Write f(ωn) as

gt(ωq
n)ωet

n + · · ·+ g2(ωq
n)ωe2

n + g1(ωq
n)ωe1

n

where ei 6≡ ej (mod q) for 1 ≤ i < j ≤ t. If
q2|n, or t < q, go to Step 6.

5. Rewrite f(ωn) in the form:

g̃1(ωq
n)ωn/q

n + g̃2(ωq
n)ω2n/q

n + · · ·
+g̃q−1(ωq

n)ω(q−1)n/q
n + g̃q(ωq

n);

Let g̃M (x) be the polynomial with minimum
number of nonzero terms among all g̃i(x); Do

g1(x) ← g̃1(x)− g̃M (x)
· · ·

gM−1(x) ← g̃M−1(x)− g̃M (x)
gM (x) ← g̃M+1(x)− g̃M (x)

· · ·
gt−1(x) ← g̃t(x)− g̃M (x)

t ← t− 1.

6. If for all 1 ≤ i ≤ t, zerotesting( gi(x), n/q )
outputs “yes”, then return “yes”, else return “no”.

Figure 1. Algorithm zerotesting(f(x), n)
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1, let [gi1(x), gi2(x), · · · , gihi(x)] be the list of polynomials
that are inputs of zerotesting in the recursive level i. At
the first level, there is only one polynomial f(x). Namely,
h1 = 1 and g1,1(x) = f(x). We shall show that for 2 ≤
i ≤

∑l
i=1 βi + 1,∑

1≤j≤hi

sps2(gij(x)) ≤
∑

1≤j≤hi−1

sps2(g(i−1)j(x)). (6)

W.l.o.g. consider the function call of
zerotesting(g(i−1)1(x), n′). Suppose that in Step 4,
we write g(i−1)1(ωn′) as

g1(ωn′/q)ω
e1
n′ + g2(ωn′/q)ω

e2
n′ + · · ·+ gτ (ωn′/q)ω

eτ

n′

and that gj has sparseness aj for 1 ≤ j ≤
τ . Then sps(g(i−1)1(x)) =

∑τ
j=1 ai. Again

w.l.o.g., assume that a1 ≤ a2 ≤ · · · ≤ aτ .
Suppose that gi1(x), gi2(x), · · · , git(x) are handled in
Step 6 of zerotesting(g(i−1)1(x), n′). The sparseness of
gi1(x), gi2(x), · · · , git(x) are either a1, a2, · · · , aτ respec-
tively, or are at most a2 + a1, a3 + a1, · · · , aτ + a1 respec-
tively. In both cases, we have∑

1≤j≤t

sps2(gij(x)) ≤ sps2(g(i−1)1(x)).

Sum up for all g(i−1)j(x), 1 ≤ j ≤ hi−1, we prove (6).
Since at the first level, there is only one polynomial with

sparseness k, the algorithm will never handle more than
k2 many sparse cyclotomic integers in any recursive level,
and each cyclotomic integers will have sparseness no larger
than k. This proves the theorem. 2

4 Search for a large conjugate

First we review some facts about complex vector space.
It is actually not much different from the commonly known
vector space Rk. For a complex number v, we denote its
complex conjugate by v. If v = (v1, v2, · · · , vk) and u =
(u1, u2, · · · , uk) are two vectors in Ck, the inner product of
v and u can be defined as

< v, u >=
k∑

i=1

viui.

The (2-)norm of a vector v is defined as
√

< v, v > and is
denoted by |v|. Let v1, v2, · · · , vk be vectors in Ck. It is
well known that the Gram-Schmidt orthogonalization ap-
plies and it produces orthogonal vectors v∗1, v∗2, · · · , v∗k by

the following procedure:

v∗i = vi −
i−1∑
j=1

µi,jv∗j

µi,j =
< vi, v∗j >

< v∗j , v∗j >

We have |vi| ≥ |v∗i | for all 1 ≤ i ≤ k. Denote the k×k ma-
trix (vT

1 , vT
2 , · · · , vT

k ) by V . Then |det(V )| =
∏k

i=1 |v∗i |.
Consider the lattice v1Z + v2Z + · · · + vkZ. The small-
est norm of nonzero vectors in the lattice, denoted by λ(V ),
is no shorter than the shortest vector in the Gram-Schmidt
orthogonalization, i.e.

λ ≥ min
i
|v∗i | ≥

|det(V )|
|maxi vi|k−1

.

Lemma 6 If the norm of a vector v = (v1, v2, · · · , vk) ∈
Ck is greater than λ, then there exists 1 ≤ i ≤ k such that
|vi| ≥ λ/

√
k.

We are interested in designing a deterministic algorithm
to find a conjugate with large absolute value.

Theorem 2 Let k be a positive integer. Let n be a posi-
tive integer whose prime factors are all greater than k. Let
e1, e2, · · · , ek be distinct nonnegative integers less than n.
Let c1, c2, · · · , ck be nonzero integers. Then there exists
1 ≤ i ≤ k, such that

|σ(i)(ckωek
n +ck−1ω

ek−1
n +· · ·+c1ω

e1
n )| > 1

2(k2 log n+k log k)
.

Proof: It is obvious that σ(i) is a field automorphism
in Gal(Q(ωn)/Q) for 1 ≤ i ≤ k and the matrix V =
(σ(i)(ωej

n ))1≤i,j≤k is Vandermonde, hence

det(V ) = det((σ(i)(ωej
n ))1≤i,j≤k)

=
k∏

i=1

ωei
n

∏
1≤i<j≤k

(ωej
n − ωei

n ).

If ej 6≡ ei (mod n), then |ωej
n − ωei

n | ≥ 1/n. Hence we
can bound the absolute value of det(V ) from below:

|det(V )| =
∏

1≤i<j≤k

|(ωej
n − ωei

n )| ≥ (1/n)k2
.

Consider the lattice formed by the column vectors of V :
σ(1)(ωe1)
σ(2)(ωe1)

...
σ(k)(ωe1)

 Z+


σ(1)(ωe2)
σ(2)(ωe2)

...
σ(k)(ωe2)

 Z+· · ·+


σ(1)(ωek)
σ(2)(ωek)

...
σ(k)(ωek)

 Z.
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The shortest vector has a norm greater than
det(V )/(

√
k)k−1 ≥ 1/(nk2

k(k−1)/2). By Lemma 6,
we have that there must exist 1 ≤ i ≤ k such that

|σ(i)(
k∑

i=1

ciω
ei
n )| ≥ 1

2(k2 log n+k log k)

2

A nice feature of the theorem is that the lower bound is
independent of the height of the polynomial

∑k
i=1 cix

ei .

5 Conclusion and Future Research Direction

In this paper, we study the zero testing problem of sparse
cyclotomic integers and some related problems. We present
the first deterministic polynomial time algorithm for the
zero testing problem of sparse cyclotomic integers. We also
show that a large conjugate of a cyclotomic integer f(ωn)
in Q(ωn) can be found in polynomial time if n is free of
prime factor less than sps(f(x)) + 1. We believe that our
method uses the sparseness in an essential way, and hope
that it may help to solve the sign determination problem of
real sparse cyclotomic integers.
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