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Abstract

In this paper, a new factorization algorithm is presented, which finds a prime
factor p of an integer n in time (D log n)O(1), if 4p − 1 = Db2 where D and b are
integers. Hence this algorithm will factor a number efficiently, if it has a prime factor
p such that 4p−1 is a product of a small integer and a square. Such primes should be
avoided when we select the RSA secret keys. Some generalizations of the algorithm
are discussed in the paper as well.

Classification of Topics: Cryptography, Integer factorization.

1 Introduction

Integer factorization is a classical problem in computer science and number theory. It
has been studied for centuries and been intensively investigated in the last four decades.
Although remarkable progresses have been achieved, especially in the last thirty years,
this problem is still considered difficult. Several cryptographic systems based on the hard-
ness of factorization or analogical problems have been proposed. Among them, the RSA
system is the most famous and widely used. So far, the fastest general-purpose factor-
ization algorithm is the number field sieve (NFS), which has a heuristic time complexity

O(ec(logn)1/3(log logn)2/3
) to factor an integer n, where c ≈ 1.923. We refer to [3] for a survey

on the current knowledge about factoring general integers.
Other than the general-purpose factorization algorithms, some algorithms are very ef-

ficient at finding a prime factor of special form, even though, the performance of those
algorithms is sometimes worse than that of the exhaustive search if we try to apply them
on general integers. Those algorithms include:

1. Pollard’s p− 1 method [16] finds a prime factor p efficiently if p− 1 is smooth. More
precisely, if the largest prime factor of p − 1 is r, then it takes time (r log n)O(1) for
the algorithm to find p.

2. Hugh Williams’s p+ 1 method [19] works well when p+ 1 is smooth.
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3. The Bach-Shallit cyclotomic polynomial method [1] extends the ideas in the p ± 1
algorithms. It finds a prime factor p of n efficiently if φk(p) is smooth, where φk is the
k-th cyclotomic polynomial. This algorithm provides a unified presentation of a class
of factorization algorithms, including the p±1 methods. But its practical application
is limited because when k > 2, φk(p) is much bigger than p, hence unlikely to be
smooth.

4. Other than integers with special form prime factors, integers with certain prime
power can also be efficiently factored. For example, Boneh and etc. [2] proposed an
algorithm, which factors n = prq in polynomial time if p and q are primes and r is
close to log p.

To implement RSA cryptosystem, two large primes need to be selected and kept secret.
The product of these two primes is made public. The security of this cryptosystem is
destroyed if the adversary can factor the product. In order to avoid the p− 1 factorization,
we should make sure that p − 1 contains at least one large prime factor, or better yet,
p− 1 = 2q with q a prime. Traditionaly, a prime p is called safe, if p−1

2
is also a prime.

We call n a RSA integer, if it is the product of two different primes. Given a prime p,
if any of the p − 1, p + 1 or φk(p) (k is small) is smooth, then a RSA integer with p as
its prime factor can be factored efficiently. These primes are unsafe and should be avoided
when we select RSA secret primes. In this paper, we report a new factorization algorithm
and a new class of unsafe primes. Our main result is

Theorem 1 Let integer n = pm with p a prime and m an integer. There exists a random
algorithm finding p from n in time (D log n)O(1) if p has form (Db2 + 1)/4 with b and D
integers.

Note that it must hold that D ≡ 3 (mod 8). The algorithm is called 4p− 1 method in
this paper.

Remark 1 If a prime factor of n is known to have special form 1+Db2

4
, then factorization

of n amounts to finding the integer solutions of the multivariate equation:

(1 +Dx2)y − 4n = 0.

In his seminal paper [7], Coppersmith proposed a lattice reduction technique to solve certain
kinds of integral multivariate equations. However, it can be verified that his algorithm does
not work here.

2 Overview of the algorithm

Our algorithm can be viewed as a variant of the elliptic curve factorization algorithm
invented by Lenstra [13]. Let R = Z/nZ. In his algorithm, a random elliptic curve
E/R with a point P on that curve is chosen. A large smooth number k is computed.
Since the smooth bound B is usually set to be subexponential, computing k alone takes
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subexponential time. The order of E(Fp) for some p|n is B-smooth with subexponential
probability. In this case, computing kP usually reveals p. The idea in the algorithm
originates from the p− 1 method. As in the p− 1 method, smoothness plays an important
role in Lenstra’s algorithm. But the latter is a general-purpose factorization algorithm as
oppose to the p− 1 method.

In our algorithm, we fix the set of elliptic curves and use n itself instead of a large
smooth integer k as the multiplier. Our algorithm outputs a prime factor p of n, if E(Fp)
has order exactly p. Since given an arbitrary elliptic curve, it is usually difficult to find
a point on the curve modulo a composite number, it is important that we find a way to
avoid working with points explicitly. Instead of computing a product of n and a point, we
evaluate the n-th division polynomial on a randomly chosen integer x, which we hope is
an x-coordinate of an Fp-point on the E. A random integer becomes such an integer with
probability about 1/2, which is an easy consequence of Hasse’s Lemma. Computing the
g.c.d. of n and the value of the division polynomial modulo n gives us the factorization of
n.

We first consider the case when the set of elliptic curves is the rational elliptic curves with
complex multiplications. For any curve E in this set, the primes p such that |E(Fp)| = p
can be described. They include every prime p such that 4p − 1 is a product of D and a
square, where D ∈ {3, 11, 19, 43, 67, 163}. We then extend ideas to work on the general D.
The idea is to use elliptic curve with j-invariant

j = X (mod HD(X), n),

where HD(X) is the Hilbert class polynomial for the field with discriminant −D. A RSA
integer with prime factor of one of these forms can be factored efficiently by our algorithm
if D is small.

We can consider using the rational elliptic curves with small j-invariants and the hy-
perelliptic curves with small genus g as well. A hyperelliptic curve with Jacobian group of
order pg over Fp can be used to factor any integer with prime factor p. Several interesting
questions in number theory are raised: (1) Given a prime p, what are the (hyper)elliptic
curves with Jacobian group of order p(pg) over Fp? The question can help us pick good
primes free of 4p − 1 attack. (2) Given a curve C/Q with genus g, how many primes p
are there such that the reduction of C at p has Jacobian group of order pg over Fp? In
the elliptic curve case, the problem has been studied. We will review some results in this
paper. However, we are not aware of any results on the similar question about hyperelliptic
curves.

The novelties of our algorithm includes (1) We use n as the multiplier. Using integers
closely related to n is another possibility. (2) We avoid finding a point on the curve. This
is very important since we need to work with a curve and its quadratic twist. Finding
points on both curves is usually a very difficult problem. If one is satisfied with random
polynomial time, then it is not necessary to know the y-coordinate of a point in order to
factor an integer. We can evaluate the n-th division polynomial on a random integer. (3)
Although our algorithm is derived from the elliptic curve factorization algorithm, it factors
numbers with special form prime factors in polynomial time, without assuming any number
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theory conjecture. The time complexity of the algorithm doesn’t rely on the abundance of
smooth numbers, which is quite different from the classical factorization algorithm.

2.1 Comparison of p− 1 method and 4p− 1 method

How many primes are vulnerable to 4p−1 attack? For simplicity, we consider using rational
elliptic curves. Given a prime p, the number of Fp-points is a random integer (almost)
uniformly distributed between p + 1 − 2

√
q and p + 1 + 2

√
p for a random elliptic curve

E/Q. Hence heuristically, given an elliptic curve E/Q, for a random prime p, |Ep(Fp)| = p
happens with probability O(1/

√
p), where Ep is the reduction of E at p. Let πE(x) denote

the number of primes p less than x such that |Ep(Fp)| = p for the elliptic curve E/Q. The
above heuristic gives us

πE(x) = O(
x

log x

1√
x

) = O(

√
x

log x
).

In fact, it was conjectured by Lang and Trotter [11] that πE(x) ≈ c
√
x

log x
. Note that c could

be 0, for example when E has non-trivial torsions.
This problem has been studied by Serre [17]. Assuming GRH, the upper bound of

x4/5(log x)−1/5 has been proved by Murty etc. [15]. They also showed that the curve tends
to have the number of points far away from the median p + 1 as p varies. Hence the RSA
integers which can be efficiently factored by our algorithm are rare. However, some cautions
need to be taken when we design RSA system, especially when we generate special form
RSA moduli [12]. Note that for a fixed small D, The most time-consuming part of 4p− 1
method is to evaluate the n-th division polynomial modulo n, whose time complexity is
roughly equal to computing a multiplication of a point by the number n.

The p− 1 method works if p− 1 is a smooth number. We say an integer is l-smooth, if
all its prime factors are less than l. If we choose the smooth bound to be l = (log n)c, c > 1,
then there are about n1−1/c l-smooth number less than n [8]. Again using the heuristical

argument, we can see that about n1−1/c

logn
primes are vulnerable to p − 1 attack. In order

to make p − 1 method competitive to 4p − 1 method, we have to choose c > 2. The time
complexity of the attack is equivalent to computing s-power of a integer modulo n, where
s is about (

√
n)logc n.

Hence in limited time, 4p−1 method will factor more numbers than p−1 method does.
When we increase the time limitation, then p− 1 will outperform the 4p− 1 method.

Lenstra’s algorithm also provides a set of easily-factored integers, namely, those which
contain the primes p such that the number of Fp-points on a pre-fixed elliptic curve is
logc n-smooth. The situation is similar to the p− 1 method.

3 Elliptic curves

An elliptic curve is a smooth cubic curve. Let k be a field. If the characteristic of k is
neither 2 nor 3, we may assume that the elliptic curve is given by an equation of the form

y2 = x3 + ax+ b, a, b ∈ k.
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The discriminant of this curve is defined as ∆ = −16(4a3 + 27b2), which is non-zero as
the curve is smooth. For detailed information about elliptic curves, we refer to Silverman’s
book [18].

The j-invariant of the curve y2 = x3 +ax+b is defined as j = 1728 4a3

4a3+27b2
. Two elliptic

curves with a same j-invariant are isomorphic over the algebraic closed field. For elliptic
curves defined over a prime finite field Fp with p > 3, two curves with a same j-invariant
may not be isomorphic. If j 6= 0 or 1728, there are exactly two isomorphic classes which
have the same j-invariant, one can be represented by E1 : y2 = x3 + kx + k and the other
by Ec : y2 = x3 + c2kx + c3k, where k = 27j

4(1728−j) and c is a quadratic nonresidue modulo
p. The latter curve Ec is called the quadratic twist of the former one. It is not hard to see
that |E1(Fp)|+ |Ec(Fp)| = 2p+ 2. There are at most 6 isomorphic classes with j = 0, and
at most 4 isomorphic classes with j = 1728.

The set of points on an elliptic curve consists of the solution set of the definition equation
plus a point at infinity. These points form an abelian group with the infinity point as the
identity. We call a point torsion if it has a finite order in the group. The x-coordinates
of the torsions of order n > 3 are the solutions of Pn(x), the n-th division polynomial
of E . The Pn(x) can be evaluated using only O(log n) arithmetic operations (additions,
subtractions and multiplications) from a, b and x, just like that nP can be computed using
only O(log n) point additions. The observation is implicitly stated in several places, we
refer to [5] for the formal proof (of a stronger version).

Proposition 1 For any integer n(> 0), Pn(x) can be computed by O(log n) ring operations
from a, b and x, where Pn is the n-th division polynomial of E : y2 = x3 + ax+ b.

Assume that a, b ∈ Z. Even when n is very large, we can still carry out the computation
of Pn(x) if we do every operation modulo an integer m. The result can be used to factor m.
The prime factors of Pn(x) forms a subset of all the primes such that the reduction curves
at those primes have order dividing n over the prime finite field. The next proposition
follows easily from the definition of torsion points.

Proposition 2 Let E : y2 = x3 + ax + b be an elliptic curve defined over Z. Assume that
E has a good reduction E at a prime p. If x is an integer and

1. it is the x-coordinate of a point on E(Fp),

2. the point (x,
√
x3 + ax+ b) is not a torsion on E,

then Pl(x) 6= 0 and p|Pl(x), where l is any non-zero multiple of |E(Fp)|.

The number of torsions is very small [9, 10]. A random integer x has the properties
described in the above proposition with probability about 1/2.
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D jD The form of p
3 0 4p− 1 = 3b2

11 (−25)3 4p− 1 = 11b2

19 (−25 ∗ 3)3 4p− 1 = 19b2

43 (−25 ∗ 3 ∗ 5)3 4p− 1 = 43b2

67 (−25 ∗ 3 ∗ 5 ∗ 11)3 4p− 1 = 67b2

163 (−26 ∗ 3 ∗ 5 ∗ 23 ∗ 29)3 4p− 1 = 163b2

Table 1: The primes of special forms

4 Proof of the main theorem

Let p be a prime greater than 3. A non-supersingular elliptic curve E/Fp has a com-
plex multiplication by an order of a quadratic field K = Q(

√
−D). We are interested in

the curves which have exactly p Fp-points. Similar problem has been studied in [14]. If
|E(Fp)| = p, then its quadratic twist has p + 2 Fp-points. First we consider the curves
defined over Q. See Table 1 for the list of integers D, the corresponding j-invariants of the
curves whose complex multiplications are the maximal order in Q(

√
−D), and the forms

of the primes p such that at least one of the isomorphic classes of the curves has exactly p
Fp-points.

If p has one of the special forms in Table 1, we can easily construct an elliptic curve
E/Fp with exactly p Fp-points. See [14] for the algorithm to decide the right isomorphic
classes. When it comes to the factorization, p is unknown. It is impossible to check whether
an integer is a quadratic residue modulo p or not. Fortunately the j-invariants of the curves
do not depend on p, and one half of the integers are quadratic residues modulo p, the other
half are quadratic non-residues modulo p. Hence we can still construct the right curves
with probability about 1/2.

Now we study the case when D is not in the table 1. Suppose n contains a prime
factor p and 4p− 1 is a product of D and a square. The Hilbert polynomial HD(x) is the
minimum polynomial for the j-invariant of the elliptic curve whose endomorphism ring is
the maximal order of Q(

√
−D). It can be computed in time DO(1) [6, page 415]. We can

use the curve with j-invariant j = X (mod HD(X), n). (For better time complexity, we
may use Weber polynomials and compute j by simple algebraic operations.) The Pn(x)
can still be computed for any random integer x. Let g(X) = Pn(x) ∈ Z/(n)[X]. When
modulo p, g(X) has a common root with HD(X) with probability around 1/2 for random
c. If q is another prime factor of n, it is almost certain that gcd(HD(X) (mod q), g(X)
(mod q)) = 1. We can factor n efficiently according to the following lemma.

Lemma 1 Given an integer n and two monic polynomial f(x), g(x) ∈ Z/(n)[x] with max-
imum degree d. If n has two prime factors p and q, and

1. gcd(f(x) (mod p), g(x) (mod p)) 6= 1;

2. gcd(f(x) (mod q), g(x) (mod q)) = 1,

then n can be factored in time (d log n)O(1).

6



Proof: Apply Euclidean algorithm on f(x), g(x). During the execution of the algorithm,
if we find a zero-divisor, n is factored as a consequence. Now assume that the algorithm
is completed. The output should be a constant a ∈ Z/(n) since gcd(f(x) (mod q), g(x)
(mod q)) = 1. In this case p|gcd(n, a) and q 6 |gcd(n, a). 2

5 Algorithm description and example

We now describe the algorithm. In the following algorithm description, we assume D
is known. There are a little difference between D = 3 and D 6= 3, so we treat them
separately. First we consider the case when D 6= 3. In the following algorithm, it suffices
to set B1 = B2 = 10.

compute HD(X);
let j = X (mod HD(X), n);
compute a(X) = j

1728−j ;

randomly select B1 integers c1, c2, · · · , cB1 ;
randomly select B2 integers x1, x2, · · · , xB2 ;
for each c ∈ {c1, c2, · · · , cB1}

for each x ∈ {x1, x2, · · · , xB2}
compute z(X) = Pn(x) where Pn is the n-th division
polynomial of the ellipitic curve y2 = x3 + 3a(X)c2x+ 2a(X)c3;
compute α = gcd(z(X), HD(X) (mod n));
if the Euclidean algorithm can not process, a zero-divisor in
Z/(n) must been found, output the factor of n and exit;
if gcd(α, n) is non-trivial, output the results and exit;

endfor
endfor

This algorithm factors the following 98-digit number in the matter of seconds on a 1GHz
PC.

n = 2673244416506417435728194307912316746792104124799

7589999975598149848254595650256312445340591487269

The Hilbert polynomial at discriminant −35 is

H35(X) = X2 + 117964800X − 134217728000.

Let E be the elliptic curve with j = X (mod n,X2 + 117964800X − 134217728000) and
c = 1 and Pn(x) be its n-th division polynomial. Evaluating Pn(2) gives us z(X)
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9835574879806685785089618088376686675536348034816708

114592982090289489337979148083794880998750685*X

+ 17884831546461983409826598629611855714964241177958

06465489635634750028292682696385406645184555639.

Computing gcd(z(X), X2 + 117964800X − 134217728000 (mod n)) yields

2655409412619398519588238788594643694821968607782

2481810088900062744578960275375216911557353776836

which contains the prime factor of n

p = 1394116698586249968612479056968729556521399688429.

Indeed, 4p− 1 = 35× 3991586435185531905360572. The other factor of n is

q = 19175183965713265819619376872762949381791719783961.

Note that p±1 methods will not factor n in reasonable time, since the prime factorizations
of p± 1 and q ± 1 are

p− 1 = 22 ∗ 3 ∗ 223283 ∗ 520310061889414617552791396631453341171443

p+ 1 = 2 ∗ 5 ∗ 3596009 ∗ 177737796426323039 ∗ 218121546208842242073293

q − 1 = 23 ∗ 5 ∗ 1423 ∗ 336879549643592161272301069444183931514260713

q + 1 = 2 ∗ 3 ∗ 17 ∗ 173 ∗ 1254682349 ∗ 866082924064902690008192697814996903

None of the general-purpose factorization algorithm can factor n without hours of compu-
tation on a single 1GHz PC.

When D = 3, we should use the curve with j = 0, namely, y2 = x3 + a. There are at
most six isomorphic classes, depending on the sixth power residue classes that a belongs
to. If randomly choose a, then with probability 1/6, we will have the right curve E with
|E(Fp)| = p. The algorithm in this case is as follows. We can set B1 = 20.

randomly select B1 integers a1, a2, · · · , aB1 ;
randomly select B2 integers x1, x2, · · · , xB2 ;
for each a ∈ {a1, a2, · · · , aB1}

for each x ∈ {x1, x2, · · · , xB2}
compute z = Pn(x) (mod n) where Pn is the n-th division
polynomial of elliptic curve y2 = x3 + a;
compute gcd(z, n);
if the gcd is non-trivial, output the result and exit;

endfor
endfor

We can certainly use other rational elliptic curves without complex multiplications.
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for j from −B3 to B3

compute a = j
1728−j (mod n);

randomly select B1 integers c1, c2, · · · , cB1 ;
randomly select B2 integers x1, x2, · · · , xB2 ;
for each c ∈ {c1, c2, · · · , cB1}

for each x ∈ {x1, x2, · · · , xB2}
compute z = Pn(x) (mod n) where Pn is the n-th division
polynomial of the elliptic curve y2 = x3 + 3ac2x+ 2ac3;
compute gcd(z, n);
if the gcd is non-trivial, output the result and exit;

endfor
endfor

endfor

In the algorithm, the bound B3 may be set accordingly. The time complexity is
B3(log n)O(1)

6 Conclusion and open problems

We present a new special-purpose factorization algorithm, which splits n in time (D log n)O(1),
if it has a prime factor of form (Db2 + 1)/4. As in the elliptic curve factorization algo-
rithm, this method relies on the fact that the order of an elliptic curve group over Fp is
uniformly distributed between p + 1 − 2

√
p and p + 1 + 2

√
p, hence could be p. If we use

the multiplicative group of finite field, we can not obtain such an algorithm.
From the past experiences, we know the algorithms of factoring integers and solving

the discrete logarithm over finite fields are usually coupled with each other. For example,
when p − 1 is smooth, the discrete logarithm over Fp admits efficient algorithm too. It
is interesting to see whether the discrete logarithm problem on Fp with p of the special
forms has polynomial time algorithm or not. It is well-known that the discrete logarithm
problem on E/Fp where |E(Fp)| = p can be efficiently solved.
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