
Efficient Algorithms for Sparse Cyclotomic

Integer Zero Testing

Qi Cheng∗ Sergey P. Tarasov† Mikhail N. Vyalyi‡

October 29, 2008

Abstract

We present two deterministic polynomial time algorithms for the fol-
lowing problem: check whether a sparse polynomial f(x) vanishes at a
given primitive nth root of unity ζn. A priori f(ζn) may be nonzero
and doubly exponentially small in the input size. The existence of a
polynomial time procedure in the case of factored n was conjectured by
D. Plaisted in 1984, but all previously known algorithms are either ran-
domized, or do not run in polynomial time.

We apply polynomial zero testing algorithms to construct a nondeter-
ministic polynomial time algorithm for the torsion point problem (TP).
The problem TP is a particular case of the feasibility problem for a system
of polynomial equations in complex numbers (coefficients of polynomials
are integers). In the problem TP all coordinates of a solution must be
roots of unity.

Key words: algorithm, cyclotomic polynomial, root of unity, sparse
representation

1 Introduction

Let ζn = e2πi/n be an nth primitive root of unity. A vanishing sum of roots of
unity has the form

n−1∑
j=0

ajζ
j
n = 0 (1)

where the coefficients aj are integers.

∗School of Computer Science, The University of Oklahoma, Norman, OK 73019, USA. This
research is partially supported by NSF Career Award CCR-0237845 of USA and by Project
973 (no: 2007CB807903) of China.

†Dorodnitsyn Computing Center of RAS, Vavilova, 40, Moscow, 119991, Russia. The work
is supported by the RFBR grant 08–01–00414.

‡Dorodnitsyn Computing Center of RAS, Vavilova, 40, Moscow, 119991, Russia. The
work is supported by the RFBR grants 08–01–00414, 05–01–02803–NTsNIL a and the grant
NS 5294.2008.1.

1

There are many classification results on vanishing sums of roots of unity.
Rédei [17] and Schoenberg [19] described the lattice of coefficients of vanishing
sums (see also Rédei [16], de Bruijn [4], Lam and Leung [13]). Conway and
Jones [7] gave a lower bound on the size of the support set of a minimal vanishing
sum with nonnegative coefficients. The paper by Lam and Leung [13] contains
an exact characterization of the set of `1-norms of vectors of the coefficients
of vanishing sums with nonnegative coefficients. Steinberger [21] developed a
method for construction of minimal sums with large coefficients.

In this paper we examine the algorithmic aspects of zero testing of sums of
roots of unity and consider the following problem. Given an integer n, a finite
support set J of natural numbers and a set of integer coefficients aj , j ∈ J check
the equality ∑

j∈J

ajζ
j
n = 0 . (2)

Hereafter we call this problem the cyclotomic test (CT for brevity), or sparse
cyclotomic integer zero testing, as

∑
j∈J ajζ

j
n is an algebraic integer in the cy-

clotomic field Q(ζn).
Due to the irreducibility of cyclotomic polynomials Φn(x), the equality (2)

is equivalent to the divisibility of a sparse polynomial

f(x) =
∑
j∈J

ajx
j (3)

by the cyclotomic polynomial Φn(x). Note that Φn(x) | (xn − 1) and it is easy
to compute f(x) mod (xn − 1). For this reason hereafter we assume without
loss of generality that deg f(x) < n.

A sparse representation of a polynomial f(x) =
∑d

i=0 ajx
j with integer

coefficients is a list of pairs (aj , j) for aj 6= 0. The length of the list (i.e. the
number of nonzero terms in the polynomial) is called sparseness and is denoted
by sps(f). Integers in a sparse representation are written in binary. The support
set supp a of a vector a = (a0, . . . , ad)T is a set {j : aj 6= 0}. The height H(f)
of f is maxj∈J |aj | + 1. So the size of a sparse representation of a polynomial
f(x) is O(sps(f)(log H(f) + log(2 + deg f))).

The decision problem CT is stated formally as follows. The input is a sparse
representation of a polynomial f(x) and an integer n written in binary, deg f <
n. The output is ‘Yes’ if f(ζn) = 0 and ‘No’ otherwise.

Our main concern is an efficient (i.e. polynomial time with respect to the in-
put size) algorithm for the problem CT. Note that the sparseness sps(f) and the
maximal bit length of integers contained in the input L = max(log H(f), log(2+
deg f), log n) do not exceed the input size. We will use the parameters sps(f),
L and log n in bounds of running time below.

1.1 Previous work

The standard algorithm for divisibility of polynomials runs in exponential time
w.r.t. the input size of the problem CT. Nonetheless it is shown by Plaisted [15]

2

that CT is in co-NP (the related problem is called SPARSE-POLY-NONROOT
there).1

Note that a linear combination of roots of unity with integer coefficients is
an algebraic integer. So a straightforward way to check the equality (2) is to
compute a rational approximation of its left-hand side and then to compare it
with zero. For any σ ∈ Gal(Q(ζn)/Q), |σ(f(ζn))| ≤ sps(f)H(f). If f(ζn) is not
zero, we have

|Norm(f(ζn))| =
∏

σ∈Gal(Q(ζn)/Q)

|σ(f(ζn))| ≥ 1. (4)

Thus |f(ζn)| ≥ 1/(sps(f)H(f))φ(n), where φ is Euler’s phi function. This
bound is known as the root separation bound. If the bound is close to being
tight, it seems that we need exponential precision, i.e. φ(n) log(sps(f)H(f)) =
Ω(n log(sps(f)H(f))/ log log n), to tell whether a sparse cyclotomic integer is
zero or not.

On the other hand, from the inequality (4) one can also conclude that the
absolute values of most of the conjugates of a nonzero f(ζn) are not too small. In
fact, it can be shown that if we randomly select an element σ ∈ Gal(Q(ζn)/Q),
then with probability at least 1/2, |σ(f(ζn))| ≥ 1/sps(f)H(f). So we can
perform zero testing of sparse cyclotomic integers in randomized polynomial
time. This idea has been used in [5, 2] to design randomized algorithm for
polynomial identity testing and zero testing of expressions involving roots of
rationals.

Note that in some cases a large conjugate can be found deterministically.
(See Theorem 2 in [6].)

To our knowledge the best deterministic zero testing algorithm prior to our
extended abstracts [6, 23] was developed by Filaseta and Schinzel (see [10, The-
orem 3]). It runs in subexponential time, provided the prime power decom-
position of n is given. More precisely, the estimate of the running time in [10]
contains a factor 2s where s is the number of prime divisors of n. The algorithm
is based on the observation that f(ζn) = 0 iff

xn − 1 divides f(x)
∏
p|n

(xn/p − 1),

also observed by Plaisted in [15].
In fact, Filaseta and Schinzel proposed in [10] an algorithm for a related

problem: to check whether a sparse polynomial f(x) is divisible by some cyclo-
tomic polynomial. In other words, whether there exists n such that (n, f(x)) is
a positive instance of the CT problem. We call this problem the general cyclo-
tomic test (GCT for brevity). The running time of the GCT-algorithm in [10]
is subexponential, it uses as a subroutine the aforementioned subexponential

1There is even a more resolute statement in [15, p. 132]: “The author believes he has
a method for solving SPARSE-POLY-NONROOT in polynomial time if the prime factorization
of M is given.” To our knowledge this result is unpublished.

3

cyclotomic test. It’s worth noting that for a fixed sparseness this algorithm
runs in polynomial time.

Adding an existential quantifier usually makes a problem harder. Indeed, the
GCT is NP-hard. This result is implicitly contained in Plaisted’s theorem [15,
Theorem 5.1]2.

The result of Plaisted that CT ∈ co-NP mentioned above implies GCT ∈ Σ2.
A more sophisticated algorithm for GCT is described in a recent paper by

Filaseta, Granville, and Schinzel [9]. However, it uses the same subexponential
cyclotomic test. So, this algorithm cannot be applied to prove that GCT ∈ NP.

Another type of problem related to the cyclotomic tests are specific cases
of the complex feasibility problem FEASC. The problem is to verify the satis-
fiability of a system of polynomial equations in complex numbers (coefficients
of polynomials are integers). If the system includes equations xdi

i − 1 = 0 for
each variable xi then the coordinates of all solutions are roots of unity. This
specific case of the problem FEASC is called the torsion point problem (TP
for brevity)3. It was studied by Plaisted [15] for the univariate case (the TP1

problem for brevity4) and by Rojas [18] for the multivariate case. Plaisted thus
proved implicitly that TP1 is NP-hard.

Koiran proved in [12] that FEASC ∈ AM under the Generalized Riemann
Hypothesis. Of course, the same inclusion holds for the TP problem. Rojas [18]
improved this result for the TP problem in various ways: TP ∈ AM under a
weaker number-theoretic hypothesis and TP1 ∈ NPNP unconditionally. Also,
he proved that for a fixed number of variables and fixed degrees of roots of unity
the TP problem is in P.

Rojas indicated that the TP problem looks more tractable than the general
FEASC problem and conjectured that TP ∈ NP, which is unlikely for the FEASC
problem.

1.2 Our results

Our contribution is polynomial time deterministic algorithms for the cyclotomic
test in the case of a general (not factored) n. As a direct consequence we show
that the GCT and TP problems are in NP.

Theorem 1. CT ∈ P.

Theorem 2. GCT ∈ NP.

Theorem 3. TP ∈ NP.

It follows also from previous results (Plaisted [15], Theorem 5.1 for GCT
and Theorem 3.3 for TP1) and Theorems 2 and 3 that the problems GCT and
TP (and even TP1) are NP-complete.

2Theorem 5.1 in [15] speaks about complex numbers of modulus 1 but its proof is also
valid for the roots of unity. We are grateful to an unknown referee who explained this fact to
us.

3This potential application for our methods was indicated by one of the referees.
4Note a difference between the problems GCT and TP1: the former does not specify a root

of unity at all and the latter indicates the degree of a root.

4

Two efficient cyclotomic tests were proposed in conference papers [6, 23].
They use different techniques and their algorithmic behavior is also different.
The matrix multiplication algorithm from [23] computes a matrix M of size
sps(f)× sps(f) and a vector f̃ of dimension sps(f). Then it checks the equal-
ity Mf̃ = 0. The recursive algorithm from [6] applies the divide-and-conquer
approach and reduces an instance of the CT problem to a number of smaller
instances.

It is worth noting that the algorithms share some common features. They
use a partial prime decomposition to avoid factorization of n. Also they can
be expressed in terms of operations with sparse vectors of exponentially large
dimension. More exactly, the algorithms can be applied to a more general
problem, which we call cyclotomic array testing (CAT) see Section 4.

The paper is organized as follows. Section 2 contains an exposition of the
matrix multiplication algorithm. Section 3 presents the recursive algorithm. In
Section 4 we introduce the cyclotomic array testing problem and modify our
algorithms to solve it. Section 5 contains the proof of Theorem 3. In the final
Section 6 we discuss open questions related to zero testing.

2 Matrix multiplication algorithm

We start from an informal outline of the algorithm.
To solve an instance (n, f(x)) of the CT problem one checks the equality

f(ζn) = 0. Recall that we restrict the problem to the case deg f < n. The poly-
nomials of degree < n form a linear space. Polynomials that vanish at ζn form
a subspace of this space (the space of vanishing sums). So one can regard the
CT problem as a specific case of typical computational linear algebra problem:
does a vector belong to a subspace? Standard linear algebra techniques are too
expensive to work here as the vector and the space involved have exponential
dimension w.r.t. the input size.

Nevertheless, it is possible to reduce dimensions. This reduction is based on
a specific structure of the space of vanishing sums. Namely, the space of poly-
nomials of degree < n admits a structure of a tensor product of polynomially
many spaces of polynomial dimension and the space of vanishing sums has a
convenient description in terms of this tensor product (see the exact statements,
especially Theorem 4, in Subsection 2.1). This description is well-known (it ap-
pears in different forms in [13, 19, 21]). We need to reformulate this description
in order to characterize the space of vanishing sums as the kernel of a tensor
factored operator (see Subsection 2.2).

To avoid factorization of n we need to modify the operator taking into ac-
count the sparseness of the polynomial f . This argument is explained in Sub-
section 2.3 (see Lemma 6). Yet all these steps do not change the dimensions.
A way to truncate dimensions is based on a simple technical trick which is also
explained in Subsection 2.3.

Finally, in Subsection 2.4 we give a description of the matrix multiplication
algorithm.

5

The algorithm admits variations by changing operators in the tensor prod-
uct. We adopt a choice corresponding to an earlier version of the algorithm
(see [23]). Thus the algorithm description in [23] coincides with the description
in Subsection 2.4.

2.1 Space of vanishing sums

Let
n = pt1

1 · p
t2
2 · . . . · ptr

r (5)

be the prime power decomposition of n. For a positive integer n let Vn be the
group Q-algebra for the cyclic group of order n. Basically, we will consider Vn

as an n-dimensional vector space over the field Q of rationals equipped with
the canonical basis {e0, e1, . . . , en−1}. Sometimes we will identify Vn with the
quotient ring Q[t]/(tn − 1) (see Lemma 1 below). In these cases we assume an
isomorphism between Vn and Q[t]/(tn − 1) that maps ej to tj .

Let ϕ : Vn → Q[ζn] be an evaluation map — a Q-linear map acting on the
basis vectors by the rule

ϕ(ek) = ζk
n . (6)

We use notation Xn for the kernel of the evaluation map ϕ and call Xn the
space of vanishing sums. This space is directly related to the CT problem: by
definition, f(ζn) = 0 iff f(x) ∈ Xn provided deg f < n.

Thus, to solve the problem CT it is sufficient to check that the polynomial
f(x) belongs to the space of vanishing sums. This approach does not require any
approximation of the value f(ζn). Instead, we need a technique to operate with
vectors of polynomially bounded sparseness in a space of exponentially large
dimension. For this purpose we use a representation of Vn as a tensor product
of polynomially many factors such that the space of vanishing sums has a nice
description in terms of this tensor decomposition (see Theorem 4).

At first, we recall the well-known characterization of the space of vanishing
sums.

Lemma 1 ([17]). Xn is spanned by polynomials

xj xn − 1
xn/p − 1

, (7)

where p runs over all prime divisors of n and 0 ≤ j < n/p.

Proof. The cyclotomic polynomial Φn(x) is the greatest common divisor of poly-
nomials

xn − 1
xn/p − 1

(any non-primitive root ζj
n is a root of some polynomial xn/p − 1 where p is a

common prime divisor of n and j).

6

To obtain a compact form for the generators (7) we use a tensor decompo-
sition of Vn in the form

Vn
∼=

r⊗
k=1

Vpk
⊗ Vn/P (8)

where P = p1p2 . . . pr. This decomposition was introduced by Lam and Le-
ung [13] (see also [21]). It can be defined as follows. The isomorphism maps a
vector ej from the canonical basis to the tensor product of basis vectors:

ej 7→ ej1 ⊗ ej2 ⊗ · · · ⊗ ejr
⊗ ej′ . (9)

In (9) j′ = j mod n/P and jk is the tk-th digit in pk-ary representation of j:

j = j
(k)
0 + j

(k)
1 p1

k + · · ·+ j
(k)
t−1p

t−1
k + . . . , jk = j

(k)
t−1. (10)

Example 1. Let n = 30 = 2 · 3 · 5 and j = 9. Then j1 = 1, j2 = 0, j3 = 4,
j′ = 0. Note that for a square-free n we have jk = j mod pk. In this case the
last factor in the decomposition (8) is 1-dimensional so it can be omitted.

Example 2. Let n = 144 = 2432 and j = 15. Then j1 = 1, j2 = 2 (15 =
0 + 2 · 3 + 1 · 32), j′ = 15 mod 24 = 15.

To check that (9) defines an isomorphism we apply the following lemma.

Lemma 2. The mapping ι : j 7→ (j1, . . . , jk, j′) is a bijection of the set {0, . . . , n− 1}
onto

{0, . . . , p1 − 1} × · · · × {0, . . . , pr − 1} × {0, . . . , n/P − 1}.

Moreover, both maps ι and ι−1 can be computed in polynomial time provided the
factorization of n is known. The map ι can be computed in time O(log3 n) and
the inverse map ι−1 can be computed in time O(log4 n).

Proof. Let us describe the inverse map ι−1. The numbers jk and j′ mod ptk−1
k

determine the residue of j modulo ptk

k :

j mod ptk

k = jkptk−1
k + j′ mod ptk−1

k . (11)

By the Chinese remainder theorem j mod n is determined by residues modulo
ptk

k .
Applying efficient algorithms for modular arithmetic (see, e.g., [3]) we get

the second statement of the lemma.
Note that the tk-th digit in pk-ary representation of n can be computed by

the Horner scheme using O(tk) arithmetic operations. Since

2
P

k tk ≤
∏
k

ptk

k = n,

the overall number of arithmetic operations is O(log n). All operations are
applied to (log n)-bit integers. So, a division takes O(log2 n) time. Thus, com-
putation of the map ι takes O(log3 n) time.

7

To compute the inverse map ι−1 one should compute the residues j mod ptk

k

using (11) and apply the algorithm reconstructing j by these residues. The first
step takes O(r(log log n)2) arithmetic operations with O(log n)-bit integers. The
second can be done by r applications of the extended Euclid algorithm. Each
application takes a time O(log3 n). Since r ≤ log n, we get the time bound
O(log4 n) for the computation of the inverse map ι−1.

Note that the isomorphism (9) maps vectors of the canonical basis {ej} of Vn

to the vectors of the canonical basis of the tensor product in the right-hand side
of (8). Applying it to a vector of sparseness m we obtain a vector of the same
sparseness in the tensor product. Lemma 2 implies that this transformation can
be done efficiently.

To describe Xn in terms of tensor decomposition (8) we define the vectors
1̂p ∈ Vp by

1̂ =
p−1∑
j=0

ej . (12)

The next theorem is a reformulation of Lemma 1.

Theorem 4. Xn = Kerϕ is a sum of subspaces Xk
n, where

Xn = X1
n + X2

n + · · ·+ Xr
n,

Xk
n = Vp1 ⊗ · · · ⊗ Vpk−1 ⊗Q1̂⊗ Vpk+1 ⊗ · · · ⊗ Vpr ⊗ Vn/P , 1 ≤ k ≤ r .

(13)

(Hereafter we identify Xn and its image by isomorphism (8).)

A stronger form of Theorem 4 is contained in the paper by Lam and Le-
ung [13, Theorem 2.2]. (They attribute the theorem to Rédei, de Bruijn and
Schoenberg.)

Proof. The exponents of non-zero terms in a generator

fj,k = xj xn − 1
xn/pk − 1

form an arithmetic progression modulo n:

j, j +
n

pk
, . . . , j + a

n

pk
, . . . (a = 0, . . . , pk − 1).

Note that an addition of n/pk does not change j′ and js for s 6= k since it does
not change the residue modulo pts

s . So, the k-th components of ι(j) also form
an arithmetic progression

jk, jk + b, . . . , jk + ab, . . . (a = 0, . . . , pk − 1),

where b is a residue of n/ptk

k modulo pk. This residue is non-zero. Thus the
k-th component takes all possible values. In terms of tensor decomposition this
means that fj,k can be written as

ej1 ⊗ · · · ⊗ ejk−1 ⊗ 1̂⊗ ejk+1 ⊗ · · · ⊗ ejr ⊗ ej′ ,

thus immediately implying (13).

8

2.2 Kernel representation of the space of vanishing sums

To use Theorem 4 in the algorithm we rewrite (13) representing the space of
vanishing sums as the kernel of a suitable operator. The decomposition (13)
suggests the form of the operator as a tensor product of operators acting on
tensor factors of the decomposition (8).

For exact statements we need a bit of tensor linear algebra.

Lemma 3. Let
∑

k uk ⊗ vk = 0 and vectors uk are linearly independent. Then
vk = 0 for any k.

This simple and useful fact implies the following lemma.

Lemma 4. Let A : U → U ′, B : V → V ′ be linear operators such that KerA = 0,
KerB = 0. Then Ker(A ⊗ B) = 0. For arbitrary operators A, B we have
Ker(A⊗B) = Ker A⊗ V + U ⊗KerB.

Applying Lemma 4 inductively we obtain the expected form of the kernel of
a tensor product of operators. Let In be the indentity operator on the space
Vn. (Recall that dim Vn = n.)

Lemma 5. Let A = ⊗r
k=1Ak⊗ Inr+1 be a tensor product of operators Ak acting

on a space ⊗r+1
k=1Vnk

. Then

KerA =
∑

k

Vn1 ⊗ · · · ⊗KerAk ⊗ · · · ⊗ Vnr ⊗ Vnr+1 . (14)

Comparing (14) to (13) we conclude that the space of vanishing sums is the
kernel of a tensor product

A =
r⊗

k=1

Ak ⊗ I (15)

for any set of operators Ak such that KerAk = Q1̂nk
. Note that in this case

nk = pk for k ≤ r and nr+1 = n/P .

2.3 Using sparseness

Zero testing is thus reduced to checking that Af = 0, where A is defined by (15).
Until this point, the check may seem quite inefficient. To perform the check it
appears that one should operate in a space of exponentially large dimension and
use the prime power decomposition of n. To overcome both difficulties we take
into account the sparseness of f .

First, we will get rid of the complete factorization. We will instead use a
partial prime decomposition

n = pt1
1 . . . pt`

` q , (16)

where pk are the prime divisors of n less than sps(f) + 1. Note that for an
instance of the problem CT the decomposition (16) can be computed efficiently
as pk are upperbounded by the input size.

9

Lemma 6. In the notation above Af = 0 iff A′
`f = 0 where

A′
` =

⊗̀
k=1

Ak ⊗ IN , where N =
n∏`

i=1 pi

.

The proof of Lemma 6 is by induction using the following observation.

Lemma 7. Let f ∈ KerA′
`. Expand f as a combination of the canonical basis

vectors

f =
∑

J=(j1,...,jr;jr+1)

aJeJ , where eJ = ej1 ⊗ · · · ⊗ ej`
⊗ · · · ⊗ ejr+1 . (17)

Let S be the set of all possible values of j` in the expansion (17). If |S| < n`

then f ∈ KerA′
`−1.

Proof. Group terms of the expansion (17) with respect to the value of `-th
factor:

f =
∑
s∈S

fs ⊗ eis
⊗ ej̄s

.

Here fs ∈ ⊗`−1
k=1Vnk

.
From Ker A` = Q1̂n`

we conclude that the set {A`eis
}s∈S consists of linearly

independent vectors as well as the set {A`eis
⊗ ej̄s

}s∈S . Lemma 3 shows that
A′fs = 0 for any s where A′ =

⊗`−1
k=1 Ak. Thus A′

`−1f = (A′ ⊗ In`
)f = 0.

In order to avoid operations with exponentially long vectors in testing the
equality Af = 0 we restrict the operator A on the coordinate subspace spanned
by the canonical basis vectors from the support of the vector f .

By f̃ we denote a vector produced from f by removing zero components and
by Ã we denote a matrix formed by columns of matrix A indexed by elements
from the support of f (see Fig. 1(a)). Conditions Af = 0 and Ãf̃ = 0 are
equivalent by construction. It is a well-known fact from linear algebra that the
latter condition is equivalent to ÃT Ãf̃ = 0.

AÃ

0

f̃

= 0 AT A

ÃT Ã

0

f̃

= 0

(a) (b)

Figure 1: Truncating dimension

10

Note that ÃT Ã is a (sps(f)×sps(f)) minor of the matrix AT A (see Fig. 1(b)).
For A′

` introduced in Lemma 6 it is easy to express a matrix element of A′T
` A′

`

in terms of matrix elements of Ak. Indeed,

A′T
` A′

` =
⊗̀
k=1

AT
k Ak ⊗ IN , where N =

n∏`
i=1 pi

.

To compute a matrix element with indices (j′1, . . . , j
′
`, j

′
`+1) and (j′′1 , . . . , j′′` , j′′`+1)

one can compute the product of matrix elements

∏̀
k=1

(
AT

k Ak)j′k,j′′k
δ(j′`+1, j

′′
`+1).

2.4 Description of the matrix multiplication algorithm

The algorithm computes the vector Ã′T
` Ã′

`f̃ of dimension sps(f) and compares
it with zero vector.

There is a freedom in choice of operators Ak. To be in accordance with the
earlier version of the algorithm (see [23]) we choose operators Ak defined by the
following (nk − 1)× nk-matrices

1 −1 0 . . . 0
1 0 −1 . . . 0
. .
1 0 0 . . . −1

 (18)

It is clear that KerAk = Q1̂nk
and

AT
k Ak =


nk − 1 −1 −1 . . . −1
−1 1 0 . . . 0

. .
−1 0 0 . . . 1

 (19)

A detailed description of the algorithm is presented in Fig. 2. Correctness of
the algorithm follows from the above consideration. Let’s estimate the running
time of the algorithm. The preprocessing steps 1–3 can be done by O(k log n)
arithmetic operations with O(log n) integers. By Lemma 2 the step 4 takes a
time O(k log3 n). On the step 5 O(k2 log n) arithmetic operations are performed.
So, this step takes a time O(k2 log3 n). On the final steps 6–7 O(k2) arithmetic
operations with O(max(log n, log H(f))-bit integers are performed. So, these
steps take a time O(k2 max2(log n, log H(f))).

Thus, the overall time bound for the matrix multiplication algorithm is
O(sps2(f)L3), where L = max(log n, log H(f)).

11

Input: an integral polynomial f(x) given in sparse form and an integer
n. The degree of f is less than n.
Output: “Yes” if f(ζn) = 0, “No” otherwise.

1. If f(x) is a zero polynomial, then return “Yes”.

2. Let k be the sparseness of f(x). Write n = pt1
1 pt2

2 · · · p
tl

l q, where
p1, p2, · · · , pl are primes less than k+1 and q does not have prime
factors less than k + 1.

3. Compute P = p1 · . . . · pl.

4. For each j from the support set of f compute the index list
(j1, j2, . . . , jl, jl+1) by the rules

jm ← tm-th digit in pm-ary representation of j for m ≤ l,

jl+1 ← j mod n/P .

5. Compute matrix elements of a k × k matrix M using the index
lists by the rule

M(j′, j′′)← δ(j′`+1, j
′′
`+1)

l∏
s=1

ms,

ms ←


ps, if j′s = j′′s = 0,

1, if j′s = j′′s 6= 0,

−1, if j′s = 0 and j′′s 6= 0 or j′s 6= 0 and j′′s = 0,
0 otherwise.

6. Compute vector b of dimension k by the rule

b(j)←
∑

m∈supp f

M(j, m)fm.

Here j, m run over the support set of f and fm is the m-th
coefficient of f .

7. If all components of b are zero then return “Yes”. Otherwise
return “No”.

Figure 2: Matrix multiplication algorithm for zero testing

12

3 Recursive algorithm

In this section we present a recursive algorithm for the cyclotomic test. First
observe that if n is a prime and f(x) is a nonzero integral polynomial of sparse-
ness less than n, then f(ζn) cannot be zero. This fact can be derived from the
following theorem originally due to Chebotarev.

Proposition 1. If n is a prime, then any minor of the matrix (ζij
n)1≤i,j≤n is

not zero.

There are many proofs of the Chebotarev theorem. For an elementary one,
see [22]. By studying selected minors of the matrix (ζij

n)1≤i,j≤n when n is not
a prime, we show that if f is a nonzero integral polynomial and all the prime
factors of n are greater than sps(f), then the cyclotomic integer f(ζn) can
not be zero. If n has small prime factors, then from a sparse cyclotomic integer
f(ζn), our algorithm produces a list of sparse cyclotomic integers in smaller field,
such that f(ζn) is zero iff all the elements in the list are zero. The algorithm
applies the procedure recursively on each cyclotomic integer in the list until we
reach a field where the zero testing problem can be easily solved. The recursion
can have many levels. As the recursion goes deeper, the number of cyclotomic
integers increases, and in some cases, the sum of their sparseness also increases,
nonetheless we are able to show that the algorithm runs in polynomial time.

3.1 Key lemmas for derandomization

It is well known that the ring of integers in cyclotomic field Q(ζn) consists of
all the elements in Z[ζn]. The field automorphism of Q(ζn) is isomorphic to
(Z/nZ)∗. For an integer i ∈ (Z/nZ)∗, let σ(i) denote the field automorphism
which sends ζn to ζi

n. Then for any integral polynomial f , we have

σ(i)(f(ζn)) = f(ζi
n).

First we prove a general lemma

Lemma 8. Let E be a subfield of F . Let α1, α2, · · · , αk be elements in F .
If there exist k field automorphisms σ1, σ2, · · · , σk ∈ Gal(F/E) such that the
matrix

V =


σ1(α1) σ1(α2) · · · σ1(αk)
σ2(α1) σ2(α2) · · · σ2(αk)

...
...

. . .
...

σk(α1) σk(α2) · · · σk(αk)


is nonsingular, then α1, α2, · · · , αk are linearly independent over E .

Proof. Suppose that α1, α2, · · · , αk are linearly dependent over E. Then there
exist a1, a2, · · · , ak ∈ E such that

∑k
i=1 aiαi = 0 and ai 6= 0 for at least one i.

Hence σj(
∑k

i=1 aiαi) =
∑k

i=1 aiσj(αi) = 0 for all 1 ≤ j ≤ k. This means that

13

the vectors 
σ1(α1)
σ2(α1)

...
σk(α1)

 ,


σ1(α2)
σ2(α2)

...
σk(α2)

 , · · · ,


σ1(αk)
σ2(αk)

...
σk(αk)


are linearly dependent over E ⊆ F . Thus the matrix V is singular, which leads
to a contradiction.

Let k be positive integers and f be an integral polynomial given in sparse
form with sps(f) = k. Write n = pβ1

1 pβ2
2 · · · p

βl

l r, where p1, p2, · · · , pl are distinct
primes less than k + 1 and r is free of prime factors less than k + 1. Note that
it may be hard to factor r. As observed in [15, 10], f(ζn) = 0 iff

xn − 1 divides f(x)
∏
p|n

(xn/p − 1).

If the expansion of the latter polynomial has a short sparse representation, then
we can check quickly whether xn − 1 divides it or not by replacing xe in the
expansion with xe mod n and testing whether we have a zero polynomial or not.
Thus if r = 1 and l ≤ 2, then we can solve the zero testing problem of cyclotomic
integers efficiently.

For q ∈ {p1, p2, · · · , pl, r}, since ζe
n = ζaq+b

n = (ζq
n)aζb

n where a and b are
quotient and remainder respectively of division of e by q, we can write f(ζn) in
the following form

gt(ζq
n)ζet

n + gt−1(ζq
n)ζet−1

n + · · ·+ g1(ζq
n)ζe1

n (20)

such that exponents et, et−1, · · · , e1 fall in t different classes modulo q, and
gi(x)’s are sparse polynomials. We divide the zero testing problem of (20) into
three cases:

1. gcd(q, n/q) = 1 and t < q, which includes the case that q = r; or

2. gcd(q, n/q) = 1 and t = q, which implies that q is a prime; or

3. gcd(q, n/q) > 1, which implies that q2|n.

Each case will be handled by one of the following lemmas.

Lemma 9. If t < q and gcd(q, n/q) = 1, then the cyclotomic integer (20) is
zero iff gi(ζn/q) is zero for all 1 ≤ i ≤ t.

Proof. We shall show that ζe1
n , ζe2

n , · · · , ζet
n are linearly independent over Q(ζq

n) =
Q(ζn/q). For 1 ≤ i ≤ t, set si = 1 + (i − 1)Tn/q, where T is an integer that
is congruent to (n/q)−1 (mod q). Since for every i, si mod n/q = 1 and si

14

mod q = i < q, so gcd(si, n) = 1 and σ(si) ∈ Gal(Q(ζn)/Q), which fixes Q(ζn/q).
We only need to prove the matrix

V =


σ(s1)(ζe1

n) σ(s1)(ζe2
n) · · · σ(s1)(ζet

n)
σ(s2)(ζe1

n) σ(s2)(ζe2
n) · · · σ(s2)(ζet

n)
...

...
. . .

...
σ(st)(ζe1

n) σ(st)(ζe2
n) · · · σ(st)(ζet

n)



=


ζe1s1
n ζe2s1

n · · · ζets1
n

ζe1s2
n ζe2s2

n · · · ζets2
n

...
...

. . .
...

ζe1st
n ζe2st

n · · · ζetst
n


is nonsingular. In fact,

det(V) = (
t∏

i=1

ζei
n)×∣∣∣∣∣∣∣∣∣∣

ζ
e1(s1−1)
n ζ

e2(s1−1)
n · · · ζ

et(s1−1)
n

ζ
e1(s2−1)
n ζ

e2(s2−1)
n · · · ζ

et(s2−1)
n

...
...

. . .
...

ζ
e1(st−1)
n ζ

e2(st−1)
n · · · ζ

et(st−1)
n

∣∣∣∣∣∣∣∣∣∣
= (

t∏
i=1

ζei
n)×∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

ζ
e1T n

q
n ζ

e2T n
q

n · · · ζ
etT n

q
n

...
...

. . .
...

ζ
e1(t−1)T n

q
n ζ

e2(t−1)T n
q

n · · · ζ
et(t−1)T n

q
n

∣∣∣∣∣∣∣∣∣∣∣
,

where the matrix in the last line is Vandermonde. Hence

det(V) =
t∏

i=1

ζei
n

∏
1≤i<j≤t

(ζejTn/q
n − ζeiTn/q

n).

If ej 6≡ ei (mod q), then ejTn/q 6≡ eiTn/q (mod n). Hence det(V) 6= 0 and
ζe1
n , ζe2

n , · · · , ζet
n are linearly independent over Q(ζn/q) by Lemma 8.

Remark: The lemma implies that if n is free of prime factors less than
k + 1, then f(ζn) cannot be zero if the sparseness of f is k .

Lemma 10. If q2|n, then the cyclotomic integer (20) is zero iff gi(ζn/q) is zero
for all 1 ≤ i ≤ t.

15

Proof. For 1 ≤ i ≤ t, we define ui to be 1 + (i − 1)n/q. Since for any prime
dividing n, it must divide (i− 1)n/q, we have that gcd(ui, n) = 1. It is easy to
see that σ(ui) fixes Q(ζn/q). Just like what we do in the proof of Lemma 9, we
compute the determinant of the matrix W = (σ(ui)

n (ζej
n))1≤i,j≤t:∣∣∣∣∣∣∣∣∣

ζe1u1
n ζe2u1

n · · · ζetu1
n

ζe1u2
n ζe2u1

n · · · ζetu2
n

...
...

. . .
...

ζe1ut
n ζe2ut

n · · · ζetut
n

∣∣∣∣∣∣∣∣∣
= (

t∏
i=1

ζei
n)×∣∣∣∣∣∣∣∣∣∣

ζ
e1(u1−1)
n ζ

e2(u1−1)
n · · · ζ

et(u1−1)
n

ζ
e1(u2−1)
n ζ

e2(u2−1)
n · · · ζ

et(u2−1)
n

...
...

. . .
...

ζ
e1(ut−1)
n ζ

e2(ut−1)
n · · · ζ

et(ut−1)
n

∣∣∣∣∣∣∣∣∣∣
= (

t∏
i=1

ζei
n)×

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

ζ
e1n

q
n ζ

e2n
q

n · · · ζ
etn

q
n

...
...

. . .
...

ζ
(t−1)e1n

q
n ζ

(t−1)e2n
q

n · · · ζ
(t−1)etn

q
n

∣∣∣∣∣∣∣∣∣∣
,

where we need to compute the determinant of a Vandermonde matrix in the
last line. Hence

det(W) =
t∏

i=1

ζei
n

∏
1≤i<j≤t

(ζejn/q
n − ζein/q

n).

If ej 6≡ ei (mod q), then ejn/q 6≡ ein/q (mod n). Hence det(W) 6= 0 and
ζe1
n , ζe2

n , · · · , ζet
n are linearly independent over Q(ζn/q) by Lemma 8.

The remaining case is that t = q is a prime and gcd(q, n/q) = 1. In this case,
the q integers n/q, 2n/q, · · · , (q− 1)n/q and n fall in different classes modulo q,
so we can rewrite (20) in the form

g̃1(ζq
n)ζn/q

n + g̃2(ζq
n)ζ2n/q

n + · · ·
+g̃q−1(ζq

n)ζ(q−1)n/q
n + g̃q(ζq

n) (21)

Lemma 11. If q is a prime and gcd(q, n/q) = 1, then the cyclotomic integer
(21) is zero iff g̃1(ζn/q) = g̃2(ζn/q) = · · · = g̃q(ζn/q).

16

Proof. We have that

1 + ζn/q
n + ζ2n/q

n + · · ·+ ζ(q−1)n/q
n = 0.

Hence 1 = −ζ
n/q
n −ζ

2n/q
n −· · ·−ζ

(q−1)n/q
n . Substituting this into (21), we obtain

(g̃1(ζq
n)− g̃q(ζq

n))ζn/q
n +

(g̃2(ζq
n)− g̃q(ζq

n))ζ2n/q
n +

· · ·+ (g̃q−1(ζq
n)− g̃q(ζq

n))ζ(q−1)n/q
n . (22)

Lemma 9 implies that (22) is zero iff g̃i(ζq
n) − g̃q(ζq

n) = 0 for all 1 ≤ i ≤ q − 1.
That is equivalent to

g̃1(ζn/q) = g̃2(ζn/q) = · · · = g̃q(ζn/q).

3.2 Algorithm and time complexity analysis

Based on the lemmas in the previous section, we shall take a divide-and-conquer
approach to design a zero testing algorithm for sparse cyclotomic integers. To
guarantee polynomial time complexity, when Lemma 11 applies, we pick the
g̃M (x) with fewest number of nonzero terms among all g̃i(x)’s in (21), and
test whether g̃i(ζn/q) − g̃M (ζn/q) equals to zero for all i 6= M , 1 ≤ i ≤ q. The
algorithm is described in Figure 3, whose inputs consist of an integral polynomial
f(x) given in sparse form and an integer n. The degree of f is less than n. The
algorithm outputs “Yes” if f(ζn) = 0. Otherwise it outputs “No”.

Theorem 5. The algorithm zerotesting(f(x), n) runs in time O(k3 log n(log n+
log m)2), where k is the sparseness of f(x) and m is the height of f(x).

The following lemma is useful in proving the theorem.

Lemma 12. Let t ≥ 4 be a positive integer. Let a1 ≤ a2 ≤ · · · ≤ at be positive
integers. Then

1. (
∑t

i=1 ai)2 >
∑t

i=1 a2
i ;

2. (
∑t

i=1 ai)2 >
∑t

i=2(ai + a1)2;

17

1. If f(x) is a zero polynomial, then return “Yes”.

2. Let k be the sparseness of f(x). Write n = pβ1
1 pβ2

2 · · · p
βl

l r, where
p1, p2, · · · , pl are primes less than k + 1 and r does not have prime
factors less than k + 1.

3. If r = 1 and l ≤ 2, then if

(xn − 1)|f(x)
∏
p|n

(xn/p − 1),

return “yes”, else return “no”.

4. Let q = max{p1, p2, · · · , pl, r}. Write f(ζn) as

gt(ζq
n)ζet

n + · · ·+ g2(ζq
n)ζe2

n + g1(ζq
n)ζe1

n

where ei 6≡ ej (mod q) for 1 ≤ i < j ≤ t. If q2|n, or t < q, go to Step 6.

5. Rewrite f(ζn) in the form:

g̃1(ζq
n)ζn/q

n + g̃2(ζq
n)ζ2n/q

n + · · ·
+g̃q−1(ζq

n)ζ(q−1)n/q
n + g̃q(ζq

n);

Let g̃M (x) be the polynomial with minimum number of nonzero terms
among all g̃i(x); Do

g1(x) ← g̃1(x)− g̃M (x)
· · ·

gM−1(x) ← g̃M−1(x)− g̃M (x)
gM (x) ← g̃M+1(x)− g̃M (x)

· · ·
gt−1(x) ← g̃t(x)− g̃M (x)

t ← t− 1.

6. If for all 1 ≤ i ≤ t, zerotesting(gi(x), n/q) outputs “yes”, then return
“yes”, else return “no”.

Figure 3: Algorithm zerotesting(f(x), n)

18

Proof. The first inequality is trivial. For the second one, we have

(
t∑

i=1

ai)2 −
t∑

i=2

(ai + a1)2

=
t∑

i=1

a2
i +

∑
1≤i<j≤t

2aiaj

−
t∑

i=2

a2
i − (t− 1)a2

1 −
t∑

i=2

2a1ai

=
∑

2≤i<j≤t

2aiaj − (t− 2)a2
1

> 0

Now we are ready to prove Theorem 5.

Proof. This algorithm is recursive. There are at most
∑l

i=1 βi +1 ≤ log n many
recursive levels. For 1 ≤ i ≤

∑l
i=1 βi + 1, let [gi1(x), gi2(x), · · · , gihi

(x)] be
the list of polynomials that are inputs of zerotesting in the recursive level
i. At the first level, there is only one polynomial f(x). Namely, h1 = 1 and
g1,1(x) = f(x). We shall show that for 2 ≤ i ≤

∑l
i=1 βi + 1,∑

1≤j≤hi

sps2(gij(x)) ≤
∑

1≤j≤hi−1

sps2(g(i−1)j(x)). (23)

Without loss of generality consider the function call of zerotesting(g(i−1)1(x), n′).
Suppose that in Step 4, we write g(i−1)1(ζn′) as

g1(ζn′/q)ζ
e1
n′ + g2(ζn′/q)ζ

e2
n′ + · · ·+ gτ (ζn′/q)ζ

eτ

n′

and that gj has sparseness aj for 1 ≤ j ≤ τ . Then sps(g(i−1)1(x)) =
∑τ

j=1 ai.
Again without loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ aτ . Suppose that
gi1(x), gi2(x), · · · , git(x) are handled in Step 6 of zerotesting(g(i−1)1(x), n′).
The sparseness of gi1(x), gi2(x), · · · , git(x) are either a1, a2, · · · , aτ respectively,
or are at most a2 + a1, a3 + a1, · · · , aτ + a1 respectively. In both cases, we have∑

1≤j≤t

sps2(gij(x)) ≤ sps2(g(i−1)1(x)).

Sum up for all g(i−1)j(x), 1 ≤ j ≤ hi−1, we prove (23).
At the first level, there is only one polynomial with sparseness k. The

algorithm will have at most log n many levels and will never handle more than k2

many sparse cyclotomic integers in any recursive level. Each cyclotomic integers
will have sparseness no larger than k, and have height no larger than nm,
because in the worst case the height can only be doubled as the algorithm goes
down one level. Therefore the time complexity is O(k2 log n × k(log(nm))2) =
O(k3 log n(log n + log m)2).

19

4 Cyclotomic array testing

As it was mentioned both algorithms can be expressed in terms of operations
with sparse vectors of exponentially large dimension. For better understanding
of this feature we introduce a more general problem cyclotomic array test (CAT
for brevity).

Note that the primality of dimensions of the tensor factors in the decompo-
sition (8) is not essential for the decomposition (13). Discarding this primality
condition leads to a notion of a cyclotomic array that was introduced by Stein-
berger in [21].

We define a cyclotomic array of type (n1, . . . , nr;nr+1) as a vector from the
subspace

X =
r⊕

k=1

Vn1 ⊗ · · · ⊗ Vnk−1 ⊗Q1̂⊗ Vnk+1 ⊗ · · · ⊗ Vnr ⊗ Vnr+1 (24)

of the space V = Vn1 ⊗ · · · ⊗ Vnr+1 . The support set supp f of a vector

f =
∑

j1,...,jr+1

fj1,...,jr+1ej1 ⊗ ej2 ⊗ . . .⊗ ejr+1 ∈ V

is a set of all (j1, . . . , jr+1) such that fj1,...,jr+1 6= 0. As above, sps(f) stands
for a cardinality of support set (sparseness).

Comparing (24) and (13) shows that vanishing sums are cyclotomic arrays
satisfying the following conditions on dimensions:

– ni, 1 ≤ i ≤ r, are pairwise distinct and form the set of all prime divisors
of the total dimension dim V =

∏r+1
i=1 ni;

– if p is a prime divisor of nr+1 then p = ni for some i.

Due to Lemma 5 the kernel representation for cyclotomic arrays has the
same form as for vanishing sums.

The CAT problem is stated as follows.
Input: integers n1, n2, . . . , nr;nr+1 and a list containing m pairs (aI , I)

where aI is integer and I is a (r + 1)-tuple of indices (all integers are writ-
ten in binary).

Output: “Yes” if the vector
∑

J aJeJ is a cyclotomic array and “No” other-
wise.

The CAT problem is a natural generalization of the CT problem. It is worth
mentioning that the CAT problem is related to the transportation problem and
to the marginal distributions of multivariate probabilistic distributions. Cyclo-
tomic arrays form a right kernel of a planar multiindex transportation prob-
lem [24]. A link to marginal distributions is based on the following fact. If two
n-variate distributions p1 and p2 have the same (n− 1)-variate marginal distri-
butions then p1−p2 is orthogonal to a space of cyclotomic arrays. Applications
of the CAT algorithms to these problems are the subject of future research.

20

Now we are going to show that both algorithms can be modified to solve the
CAT problem.

The matrix multiplication algorithm. The modification of the algo-
rithm for the CAT problem starts from the step 5 (matrix computation) because
the input of the CAT problem contains all data used in the final part of the
matrix multiplication algorithm.

Note that the asymptotics of time complexity of the modified algorithm
does not change. So, the running time of the algorithm is O(sps2(f)L3), where
L = log maxj,I(nj , aI).

The recursive algorithm. The modification of the algorithm for the CAT
problem decreases tensor dimension recursively. It corresponds to decreasing of
the degree of a root of unity in the basic version of the algorithm represented
in Figure 3.

To check that a vector f is a cyclotomic array of type (; 0) the algorithm
checks that the component of f is zero (in this case there is only one component).
This step corresponds to the Step 3 in the basic version.

To check that a vector f is a cyclotomic array of type (n1, . . . , nr;nr+1) the
algorithm partitions indices (j1, . . . , jr, jr+1) from the support set according to
the value of jr+1. The vector f can be expressed as a sum

f =
∑
j∈S

fj , where fj =
∑

J:jr+1=j

fJeJ (25)

and S is the set of all possible values of jr+1 in the support of f . Then the
algorithm checks that each fj is a cyclotomic array of type (n1, . . . , nr; 0). This
step corresponds to the Step 4 in the basic version when q = r.

To check that a vector f is a cyclotomic array of type (n1, . . . , nr; 0) the
algorithm partitions indices (j1, . . . , jr) from the support set according to the
value of jr. The vector f can be expressed as a sum

f =
∑
j∈S

fj , where fj =
∑

J:jr=j

fJeJ (26)

and S is the set of all possible values of jr in the support of f .
If |S| < nr then the algorithm checks that each fj is a cyclotomic array of

type (n1, . . . , nr−1; 0). This step also corresponds to the step 4 in Figure 3 when
t < q.

Otherwise the algorithm finds a vector fj0 with the smallest support and
check that each vector fj − fj0 is a cyclotomic array of type (n1, . . . , nr−1; 0).
It corresponds to the Step 5 in Figure 3.

The correctness of the modified Step 4 follows from Lemma 7. To prove the
correctness of the modified Step 5 we need one more lemma.

Lemma 13. Let

f =
n1−1∑
s=0

es ⊗ fs ∈ Xn.

Then es ⊗ (fs − fs′) ∈ Xn for all for all s, s′.

21

Proof. Form a vector

f ′ = 1̂⊗ fs′ =
n1−1∑
s=0

es ⊗ fs′ .

By construction, fs′ ∈ Xn. The lemma follows by applying the argument of the
proof of Lemma 7 to the vector f − f ′.

The size of recursion tree is estimated in the same way as in the proof
of Theorem 5. To estimate the running time of the modified algorithm we
note that on each recursive step the algorithm sorts indices and makes ad-
ditions/substractions. Let k be the sparseness of f . The sorting takes a
time O(k log k) and the addition/substraction takes a time O(r + L), where
L = log maxj,I(nj , aI) is the bit length of integers involved and r is the depth
of the recursion tree (each recursive step can double coefficients). The running
time of a recursive step is thus O(k log k + k(r + L)). Since there are no more
than O(k2r) recursive steps, the overall running time of the modified algorithm
is upperbounded by k3r(log k + r + L).

Remark. One can reduce the CT problem to the CAT problem. This
reduction is actually the part of the matrix multiplication algorithm (steps 1–
4 in Fig. 2). Combining the reduction and the modified recursive algorithm
for the problem CAT we get another efficient zero tesing algorithm. It’s time
complexity is O(sps(f) log3 n + sps3(f) log n(log sps(f) + log n + log H(f)).

5 Torsion point problem

We prove Theorem 3 in this section. Recall that it claims TP ∈ NP. The input
of the TP problem is a list of multivariate polynomials f1, . . . , fk ∈ Z[x1, . . . , xd]
in sparse representation and a list of positive integers n1, . . . , nd. The output is
“Yes” if the system of equations

f1(x) = f2(x) = · · · = fk(x) = xn1
1 − 1 = · · · = xnd

d − 1 = 0 (27)

has solutions in Cd and “No” otherwise.
We show that CT ∈ P implies TP ∈ NP and thus Theorem 3 follows from

Theorem 1.
The argument is straightforward. Coordinates of a solution of the sys-

tem (27) can be expressed as powers of a primitive root of the degree n =∏d
j=1 nd. Note that log n is less than the input size. So, there is a short cer-

tificate (α1, . . . , αd) for a solution xj = ζ
αj
n of a instance of the problem TP.

To verify the certificate we express the values of the polynomials f1, . . . , fk at
the point (ζα1

n , . . . , ζαd
n) as cyclotomic integers and perform zero testing for each

cyclotomic integer. It is easy to see that substitutions of ζ
αj
n and grouping terms

according to powers of ζn can be done in polynomial time.

22

6 Concluding remarks

In this paper, we study the zero testing problem of sparse cyclotomic integers
and some related problems. We present two deterministic polynomial time
algorithms for the zero testing problem of sparse cyclotomic integers.

An immediate generalization of this problem: check whether

f(ζe1
n , ζe2

n , · · · , ζek
n) = 0

for a multivariate polynomial f(x1, x2, · · · , xk) given by a formula and the expo-
nents e1, e2, . . . , ek and the degree n are represented in binary. For this problem
the randomized argument outlined in Subsection 1.1 works well. So, the prob-
lem is in the class BPP. But the formula representation is more succinct than
the sparse representation, which makes the derandomization harder. It is open
whether this problem is in P.

Note also that if we use the circuit (straight-line program) representation of
the polynomials then the randomized argument fails. In this case coefficients of
polynomials can be doubly exponentially large. The complexity of this circuit
zero testing is upperbounded by a finite level of counting hierarchy [1] (in par-
tiular, the problem is in PSPACE). Lower complexity bounds for this problem
are unknown.

Another interesting open problem is to decide whether
∑

j∈J ajζ
j
n is posi-

tive or negative if it is known to be real. This sign determination problem of
sparse real cyclotomic integers appears to be much harder than the zero testing
problem. It is related to the sum of square roots problem [11, 8], a famous open
problem in computational geometry, which asks to determine the sign of

√
a1 + · · ·+

√
ak −

√
b1 − · · · −

√
bk (28)

where ai and bi are positive integers. For a prime p, the square of the principle
Gaussian sum

∑p−1
i=1 (i

p)ζi
p is p or −p. Hence

√
p ∈ Q(ζ4p). Here (i

p) is the
Legendre symbol:

(
i

p
) =

{
1, if i is a quadratic residue modulo p,

−1, if i is a quadratic nonresidue modulo p.

Applying this observation, we can write (28) as sum of at most
∑k

i=1 ai+
∑k

i=1 bi

many t-th roots of unity, where t | (4
∏k

i=1 ai

∏k
i=1 bi). As a result, we obtain a

sparse cyclotomic integer, assuming that ai’s and bi’s are bounded from above
by a polynomial function on k. This means that we reduce the problem of
comparing sums of square roots to the sign determination problem of sparse
cyclotomic integers when ai’s and bi’s are small. Note that it is still open
whether the former problem is in NP or not, even in the case when ai’s and bi’s
are bounded from above by a polynomial function on k.

23

Acknowledgments

We are thankful to the unknown referees for their comments on the first version
of the paper.

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen and P. Bro Miltersen.
On the Complexity of Numerical Analysis. IEEE Conference on Com-
putational Complexity (2006), 331–339.

[2] J. Blomer. A probabilistic zero-test for expressions involving roots of
rational numbers. In Proc. ESA, volume 1461 of LNCS, pages 151–162,
1998.

[3] E. Bach and J. Shallit. Algorithmic Number Theory, Vol. I: Efficient
Algorithms, MIT Press, Cambridge, MA, 1996.

[4] N. G. de Bruijn. On the factorization of cyclic groups, Indag. Math. 15
(1953) 370–377.

[5] Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irra-
tional numbers. SIAM J. Comput., 29(4):1247–1256, 2000.

[6] Qi Cheng. Derandomization of Sparse Cyclotomic Integer Zero Testing,
FOCS, 2007.

[7] J. H. Conway and A. J. Jones. Trigonometric Diophantine equations
(On vanishing sums of roots of unity), Acta Arith. 30 (1976) 229–240

[8] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The open problems
project: Problem 33. http://maven.smith.edu/˜orourke/TOPP/.

[9] M. Filaseta, A. Granville, and A. Schinzel. Irreducibility and greatest
common divisor algorithms for sparse polynomials.
http://www.math.sc.edu//~filaseta/papers/SparsePaper.pdf

[10] M. Filaseta, A. Schinzel. On testing the divisibility of lacunary polyno-
mials by cyclotomic polynomials, Math. Comp. 73 (2004) 957–965

[11] M. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geo-
metric problems. In Proc. ACM Symp. Theory Comp., pages 10–21,
1976.

[12] P. Koiran. Hilbert’s Nullstellensatz is in the Polynomial Hierarchy. Jour-
nal of Complexity 12 (1996), no. 4, pp. 273–286.

[13] T. Y. Lam, K. H. Leung. On vanishing sums of roots of unity. J. Algebra
224 (2000) 91–109

24

[14] M. Mignotte. Identification of algebraic numbers. J. Algorithms, 3
(1982) 197–204

[15] D. A. Plaisted. New NP-hard and NP-complete polynomial and integer
divisibility problems. Theoretical Computer Science 31 (1984) 125–138

[16] L. Rédei. Ein Beitrag zum Problem der Faktorisation von Abelschen
Gruppen, Acta Math. Acad. Sci. Hungar. 1 (1950) 197–207

[17] L. Rédei. Natürliche Basen des Kreisteilungskörpers, Teil I. Abh. Math.
Sem. Hamburg 23 (1959) 180–200

[18] J.M. Rojas. Efficiently Detecting Subtori and Torsion Points, proceed-
ings of MAGIC 2005 (Midwest Algebra, Geometry, and their Interac-
tions Conference, Oct. 7-11, 2005, Notre Dame University, Indiana),
edited by A. Corso, J. Migliore, and C. Polini), pp. 213-233, Contem-
porary Mathematics, vol. 448, AMS Press, 2007.

[19] I. J. Schoenberg. A note on the cyclotomic polynomial, Mathematika
11 (1964) 131–136

[20] J.N.Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. J. of the ACM 27(1980), 701–717.

[21] J. P. Steinberger. Minimal vanishing sums of roots of unity with large co-
efficients. http://www.math.ucdavis.edu/~jpsteinb/vanishing.ps

[22] T. Tao. An uncertainty principle for cyclic groups of prime order. Math.
Res. Lett., 12(1):121–127, 2005.

[23] S.Tarasov, M. Vyalyi. An efficient algorithm for zero-testing of a lacu-
nary polynomial at the roots of unity. In Proc. CSR2007, LNCS Vol.
4649, 2007. P. 397–406.

[24] E. Titova, V. Shevchenko. Left and right kernels of a planar multiindex
transportation problem. Proc. of VIII International seminar ‘Discrete
mathematics and applications’. MSU, Moscow (2004) 229–230. (In Rus-
sian)

25

