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Abstract

Let £ andn be positive integers; > k. Definer(n, k) to be the minimum positive value
of
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whereay, as, -+ ,ay, b1, be, - - - , by are positive integers no larger thanlt is an important
problem in computational geometry to determine a good upper bourd@f r(n, k). In
this paper we prove an upper bound6f”/1°¢7) 'which is better than the best known result
0O(2%#1og n) whenevem < ck log k for some constant. In particular, our result implies an
algorithmsubexponentiah £ (i.e. with time complexity2°(*) (log n)o(l) ) to compare two
sums of square roots of integers of val{é log k).

1 Introduction

In computational geometry, one often needs to compare lengths of two polygonal paths, whose
nodes are on a integral lattice, and edges are measured according_tortben. The problem

can be reduced to the problem of comparing two sums of square roots of integers. Most work
in computational geometry assumes a model of real-number machines, where one memory cell
can hold one real number. It is assumed that an algebraic operation, taking a square root as well
as a comparison between real numbers can be done in one operation. There is a straight-forward
way to compare sums of square roots in real-number machines. But this model is not realistic, as
shown in [6, 5].

If we consider the problem in the model of Turing machine, then we need to design an algo-
rithm to compare two sums of square roots of integers with low bit complexity. One approach
would be approximating the sums by decimal numbers up to a certain precision, and then hope-
fully we can learn which one is larger. Formally defir{@, k) to be the minimum positive value

of
Var+ o Vg = o= =y
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whereaq, as, - -+ ,ag, by, be, - - - , by are positive integers no larger than The time complexity
of the approximation approach depends directly-olog (n, k), since an approximation of a
sum of square roots of integers can be computed in time polynomial in the number of digits
in the approximation. One would like to know i log r(n, k) is bounded from above by a
polynomial function ink andlog n. If so, the approximation approach to compare two sums of
square root of integers runs in polynomial time. Note that even if the lower boundogfr(n, k)
is exponential, it does not necessarily rule out a polynomial time algorithm.

Although this problem was put forward during the 1980s [3], progress has been scarce. In
[1], itis proved that

—logr(n, k) = O(2%*logn)

using the root separation method. This immediately gives us a polynomial time algorithm of
comparing sum of square rootskifis fixed. Qian and Wang [4] gave a constructive upper bound
of r(n, k) atO(n=2+2), which corresponds to a lower bound of

—logr(n, k) = Q(klogn).

They conjecture that log r(n, k) = ©(n2=2""").

There is a wide gap between the known upper bound and lower bountbgfr(n, k). Until
the fundamental problem has been resolved, we can not even put the presumably easy problem
such as Euclidean Minimum Spanning Tree problem in P, and the Euclidean Traveling Salesman
problem in NP.

1.1 Our contribution

From the known upper bound eflog r(n, k), we conclude that there is a polynomial time algo-
rithm to compare sum of square rootgifs fixed. In this note, we consider the case in the other
end of the spectrum whengrows (almost) linear with.

Definition 1 An integern is called square free, if there does not exist a primsuch thatp?
dividesn.

It is well known that there are abodé + O(y/n) many square free integers less than If

ai,as, -+ ,ag, by, be, -+, by are distinct square free integers, then their square roots are linearly
independent over the field of rational numigerSo it is possible that andn are linearly related.

This case is also practically interesting. We often need to compare paths whose nodes are on an
[ x [ integral grid. The distance between the lattice points are square roots of integers of size
O(I?). There ard? many nodes in the grid, and if we select a dense subset out of the grid points,
we arrive in the situation whereis linear ink.

We obtain a lower bound of difference of two sums of square roots. Our lower bound beats
the root separation bound as longas: ck log k for some constant. The corresponding upper
bound of

—logr(n, k) = 200/ lesn)



becomessubexponentiain £ whenn = o(klogk), or more generally, if the square free parts
of the numbers grow at ratgk log k). Our bound implies a subexpontial algorithm, i.e., an
algorithm with time complexity2°®) (logn)°™), to compare two sums of square roots of small
integers. The proof is also simple.

We begin the presentation of our result by defining the notion of multiplicative generators.

Definition 2 Given two sets of positive integeAsand B, we say thatB multiplicatively gen-
erates A if any number inA can be written as a product of numbers franwith repetition
allowed.

It is easy to see thal multiplicatively generates itself, but for many sets, there exist much
smaller sets which multiplicatively generate them. For example, all the square free number less
thann are generated by the set of primes less tharwhose cardinality i$)(n/logn).

Theorem 1 (Main) Letcy, co, - -+ , ¢k, dy, ds, - - -, dj, be positive integers. Let
A= {a17a27”' 7ak7blab27”' 7bk}

be the set ok positive square free integers. Assume tifat < n forall 1 < i < k and
d?b; < nforall 1 <i < k. LetB be a set which multiplicatively generatds Then

|Cl\/a/—1+-.'—|—ck\/a_—d1\/a—--._dkm| > (2]{/’\/5)_2“3‘—’—1.

Since A generates itself, so this result recovers the best known lower bounthoh). In
many cases, this resultimproves that bound, siB¢ean be smaller thal| = 2k. Itis possible
that the cardinality o3 can be as small a3(log k), in which case, there is a polynomial time
algorithm comparing two sums of square roots.

Our result shows that the multiplicative structurefdéffects the minimum possible value of
|c1y/a1 + cay/az + - -+ + ey J/ag — div/by — day/by — - - - — dj/bi |, which appears to be unknown
before. In particular, we show that the root separation lower bafffdlog n of —logr(n, k)
is not tight, at least, whem is linear ink. It is still possible that whem is much larger than
k, the root separation bound becomes tight. Our result indicates that to achieve the root separa-
tion bound, it is important to select the numbefsas, - - - , ax, by, bo, - - - , by, Such that they are
pairwise relatively prime.

2 The proof

Let FF = Q(xy, %2, ,x,) be the function field oveR with indeterminater,, xs, - - - , .
Consider a field extensioR = Flyi,y2, -, yml|/(¥? — 1, -+ , 4% — z,,) Of F. Itis a linear
space of dimensio?™ overQ(x1, xs, - - - , z,,), One of whose bases is

{Bs =[]wlS {12, m}}.

icS
The Galois groug- of K over F has ordeR™. For any subsef of {1,2,--- ,m}, definescs € G
recursively as follows:



1. If S =), og is the identity element.
2. If|S] =1, then
3. If |S| > 1,05 = Hz’eSU{i}'
We haveos (Bs) = (—1)9"%IBg andG = {o|S C {1,---m}}

Lemma 1 Let{as|S C {1,2,3,--- ,m}} beasetoR™ integers. Thenormof o, , . ., asBs,
denoted by
Ni/r( ) asBg)
SC{1,2,-,m}
is a polynomial inZ [xy, zo, - - - , xp,].
Proof: By definition,
NK/F( Z OJSBS) = H U( Z aSBS) (1)
SC{1,2,-,m} oeG  SC{1,2,,m}

= H ( Z aSUSI(Bs)) (2)

S/g{l727"' 7m} Sg{1727 7m}

= I ¢ > 1¥¥lagBs). (3)

S/g{1727"' 7m} Sg{1727 7m}

The norm must be an elementih= Q(xy, z,--- ,z,,). On the other hand, if we expand the
product in the right hand side, it reducesxosg{m’m’m} BsBs, Wwherefs € Z[xy,xo, -+, Tp)
foranyS C {1,2,--- ,m}. Hence we must havés = 0 for |S| > 1. Thus
Niip( Y. asBs) =B,
SC{1,2,--,m}
which is a polynomial irZ [z, o, - - -, 2] O

Define the polynomial

fa@,a{l},a{g},m,a{l,gﬁ...,m}(xlvx?u"' 71:771) = NK/F( Z aSBS) € Z[x17$27"' 7I’m].
SC{1,2,--,m}

Now we are ready to prove the main theorem.
Proof: (of the main theorem) Denot#| by m. Assume thai3 = {hy, ho,--- , h,,}. There
is a natural ring homomorphism

¢:Q[xlax27"' y Tms Y1, Y2, aym] _>Q<\/h_17\/h_27 7\/%)
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by letting+(y;) = v'h; andy(z;) = h; for 1 <i < m.
Fix an order among all the subsets{af 2, --- ,m}. Define By = [ ], ¢ hi, and definevs as

c;  if Sisthe first set such that = By
ag = ¢ —d; if Sis the first set such that = B
0 Otherwise

We have

crvar+ -+ e/ —di/by — o —di /b= Y asBg

SC{1,2,+,m}
and

fa@,--- 01,2, m} (hla h27 T hm) = H ( Z (_1)|SIQS‘O‘SB:§')

S'C{1,2,-;m} S'C{1,2,-,m}
because of the ring homomorphism. The integer

fa@,---,a{lﬁg“.‘,m} (h‘la h27 T hm) 7& 0
since\/a1, /az, -+ , /ax, Vb1, V/ba, - - - ,\/by, are linear independent ové). So
I ¢ Y ()F™lasBy) > 1

S'C{1,2,+;m} SC{1,2,--,m}

Thus
lern/ar + -+ - + con/ag — di/by — - - - — di /b @
1

) ' ‘ (5)

H\S/#@(ng{l’zym 7m}(_1)\5 ﬂS\aSBS)

1

EIVORE ©
O

The proof relies on the fact that the norm is a nonzero integer, thus has absolute value greater
than1. Every factor in the definition of the norm is not too large (less tagn in our case),
so the smallest factor should not be too small. The technique has been used in several papers, for
example, see [2]. The estimation depends primarily on the number of factors in the definition of
the norm.

3 A corollary from the main theorem

Theorem 2 Letcy, ¢, -+ , ¢k, dy,da, - - -, dy, be positive integers. Let, as, - -, ag, by, b, -+, by
be distinct square free positive integers less thanAssume that?a; < n forall 1 < i < k and
d?b; <nforall1 <i<k. Then

|Cl\/a_1+"'+ck\/a__d1\/b_1_"'_dk\/a| > (ij\/ﬁ)_2o(m/l°gm)'
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Proof: It is well known that the number of primes less thanis O(m/logm). The set of
primes less tham generates all the positive integers less tharThe theorem follows from the
main theorem. O

Corollary 1 —logr(n, k) = 20(/legn)

4 Conclusion remarks

In this paper, we prove an upper bound8f™/ '™ for — log r(n, k), by exploring the fact that
the algebraic degree of sum ?F square free positive integers can be much less #anWe
suspect tha2®*/1ogk) 1o 1 type of upper bound holds for much largerand leave it as an open
problem.
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