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Abstract

Let k andn be positive integers,n > k. Definer(n, k) to be the minimum positive value
of
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wherea1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger thann. It is an important
problem in computational geometry to determine a good upper bound of− log r(n, k). In
this paper we prove an upper bound of2O(n/ log n), which is better than the best known result
O(22k log n) whenevern ≤ ck log k for some constantc. In particular, our result implies an
algorithmsubexponentialin k (i.e. with time complexity2o(k)(log n)O(1) ) to compare two
sums of square roots of integers of valueo(k log k).

1 Introduction

In computational geometry, one often needs to compare lengths of two polygonal paths, whose
nodes are on a integral lattice, and edges are measured according to theL2 norm. The problem
can be reduced to the problem of comparing two sums of square roots of integers. Most work
in computational geometry assumes a model of real-number machines, where one memory cell
can hold one real number. It is assumed that an algebraic operation, taking a square root as well
as a comparison between real numbers can be done in one operation. There is a straight-forward
way to compare sums of square roots in real-number machines. But this model is not realistic, as
shown in [6, 5].

If we consider the problem in the model of Turing machine, then we need to design an algo-
rithm to compare two sums of square roots of integers with low bit complexity. One approach
would be approximating the sums by decimal numbers up to a certain precision, and then hope-
fully we can learn which one is larger. Formally definer(n, k) to be the minimum positive value
of
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wherea1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger thann. The time complexity
of the approximation approach depends directly on− log r(n, k), since an approximation of a
sum of square roots of integers can be computed in time polynomial in the number of digits
in the approximation. One would like to know if− log r(n, k) is bounded from above by a
polynomial function ink andlog n. If so, the approximation approach to compare two sums of
square root of integers runs in polynomial time. Note that even if the lower bound of− log r(n, k)
is exponential, it does not necessarily rule out a polynomial time algorithm.

Although this problem was put forward during the 1980s [3], progress has been scarce. In
[1], it is proved that

− log r(n, k) = O(22k log n)

using the root separation method. This immediately gives us a polynomial time algorithm of
comparing sum of square roots ifk is fixed. Qian and Wang [4] gave a constructive upper bound
of r(n, k) atO(n−2k+ 3

2 ), which corresponds to a lower bound of

− log r(n, k) = Ω(k log n).

They conjecture that− log r(n, k) = Θ(n
1
2
−2k−2

).
There is a wide gap between the known upper bound and lower bound of− log r(n, k). Until

the fundamental problem has been resolved, we can not even put the presumably easy problem
such as Euclidean Minimum Spanning Tree problem in P, and the Euclidean Traveling Salesman
problem in NP.

1.1 Our contribution

From the known upper bound of− log r(n, k), we conclude that there is a polynomial time algo-
rithm to compare sum of square roots ifk is fixed. In this note, we consider the case in the other
end of the spectrum whenk grows (almost) linear withn.

Definition 1 An integern is called square free, if there does not exist a primep such thatp2

dividesn.

It is well known that there are about6n
π2 + O(

√
n) many square free integers less thann. If

a1, a2, · · · , ak, b1, b2, · · · , bk are distinct square free integers, then their square roots are linearly
independent over the field of rational numberQ. So it is possible thatk andn are linearly related.
This case is also practically interesting. We often need to compare paths whose nodes are on an
l × l integral grid. The distance between the lattice points are square roots of integers of size
O(l2). There arel2 many nodes in the grid, and if we select a dense subset out of the grid points,
we arrive in the situation wheren is linear ink.

We obtain a lower bound of difference of two sums of square roots. Our lower bound beats
the root separation bound as long asn ≤ ck log k for some constantc. The corresponding upper
bound of

− log r(n, k) = 2O(n/ log n)
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becomessubexponentialin k whenn = o(k log k), or more generally, if the square free parts
of the numbers grow at rateo(k log k). Our bound implies a subexpontial algorithm, i.e., an
algorithm with time complexity2o(k)(log n)O(1), to compare two sums of square roots of small
integers. The proof is also simple.

We begin the presentation of our result by defining the notion of multiplicative generators.

Definition 2 Given two sets of positive integersA andB, we say thatB multiplicatively gen-
eratesA if any number inA can be written as a product of numbers fromB with repetition
allowed.

It is easy to see thatA multiplicatively generates itself, but for many sets, there exist much
smaller sets which multiplicatively generate them. For example, all the square free number less
thann are generated by the set of primes less thann, whose cardinality isO(n/ log n).

Theorem 1 (Main) Letc1, c2, · · · , ck, d1, d2, · · · , dk be positive integers. Let

A = {a1, a2, · · · , ak, b1, b2, · · · , bk}

be the set of2k positive square free integers. Assume thatc2i ai ≤ n for all 1 ≤ i ≤ k and
d2

i bi ≤ n for all 1 ≤ i ≤ k. LetB be a set which multiplicatively generatesA. Then

|c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk| > (2k

√
n)−2|B|+1.

SinceA generates itself, so this result recovers the best known lower bound onr(n, k). In
many cases, this result improves that bound, since|B| can be smaller than|A| = 2k. It is possible
that the cardinality ofB can be as small asO(log k), in which case, there is a polynomial time
algorithm comparing two sums of square roots.

Our result shows that the multiplicative structure ofA affects the minimum possible value of
|c1
√
a1 + c2

√
a2 + · · ·+ ck

√
ak − d1

√
b1 − d2

√
b2 − · · · − dk

√
bk|, which appears to be unknown

before. In particular, we show that the root separation lower bound2O(k) log n of − log r(n, k)
is not tight, at least, whenn is linear ink. It is still possible that whenn is much larger than
k, the root separation bound becomes tight. Our result indicates that to achieve the root separa-
tion bound, it is important to select the numbersa1, a2, · · · , ak, b1, b2, · · · , bk such that they are
pairwise relatively prime.

2 The proof

Let F = Q(x1, x2, · · · , xm) be the function field overQ with indeterminatex1, x2, · · · , xm.
Consider a field extensionK = F[y1, y2, · · · , ym]/(y2

1 − x1, · · · , y2
m − xm) of F . It is a linear

space of dimension2m overQ(x1, x2, · · · , xm), one of whose bases is

{BS =
∏
i∈S

yi|S ⊆ {1, 2, · · · ,m}}.

The Galois groupG ofK overF has order2m. For any subsetS of {1, 2, · · · ,m}, defineσS ∈ G
recursively as follows:
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1. If S = ∅, σS is the identity element.

2. If |S| = 1, then

σ{i}(yj) =

{
−yj if i = j
yj if i 6= j

3. If |S| > 1, σS =
∏

i∈S σ{i}.

We haveσS′(BS) = (−1)|S
′∩S|BS andG = {σS|S ⊆ {1, · · ·m}}

Lemma 1 Let{αS|S ⊆ {1, 2, 3, · · · ,m}} be a set of2m integers. The norm of
∑

S⊆{1,2,··· ,m} αSBS,
denoted by

NK/F (
∑

S⊆{1,2,··· ,m}

αSBS)

is a polynomial inZ[x1, x2, · · · , xm].

Proof: By definition,

NK/F (
∑

S⊆{1,2,··· ,m}

αSBS) =
∏
σ∈G

σ(
∑

S⊆{1,2,··· ,m}

αSBS) (1)

=
∏

S′⊆{1,2,··· ,m}

(
∑

S⊆{1,2,··· ,m}

αSσS′(BS)) (2)

=
∏

S′⊆{1,2,··· ,m}

(
∑

S⊆{1,2,··· ,m}

(−1)|S∩S′|αSBS). (3)

The norm must be an element inF = Q(x1, x2, · · · , xm). On the other hand, if we expand the
product in the right hand side, it reduces to

∑
S⊆{1,2,··· ,m} βSBS, whereβS ∈ Z[x1, x2, · · · , xm]

for anyS ⊆ {1, 2, · · · ,m}. Hence we must haveβS = 0 for |S| ≥ 1. Thus

NK/F (
∑

S⊆{1,2,··· ,m}

αSBS) = β∅,

which is a polynomial inZ[x1, x2, · · · , xm]. 2

Define the polynomial

fα∅,α{1},α{2},··· ,α{1,2,··· ,m}(x1, x2, · · · , xm) = NK/F (
∑

S⊆{1,2,··· ,m}

αSBS) ∈ Z[x1, x2, · · · , xm].

Now we are ready to prove the main theorem.
Proof: (of the main theorem) Denote|B| bym. Assume thatB = {h1, h2, · · · , hm}. There

is a natural ring homomorphism

ψ : Q[x1, x2, · · · , xm, y1, y2, · · · , ym] → Q(
√
h1,

√
h2, · · · ,

√
hm)
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by lettingψ(yi) =
√
hi andψ(xi) = hi for 1 ≤ i ≤ m.

Fix an order among all the subsets of{1, 2, · · · ,m}. DefineB′
S =

∏
i∈S hi, and defineαS as

αS =


cj if S is the first set such thataj = B′

S

−dj if S is the first set such thatbj = B′
S

0 Otherwise

We have
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a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk =

∑
S⊆{1,2,··· ,m}

αSB
′
S

and
fα∅,··· ,α{1,2,··· ,m}(h1, h2, · · · , hm) =

∏
S′⊆{1,2,··· ,m}

(
∑

S′⊆{1,2,··· ,m}

(−1)|S
′∩S|αSB

′
S)

because of the ring homomorphism. The integer

fα∅,··· ,α{1,2,··· ,m}(h1, h2, · · · , hm) 6= 0

since
√
a1,

√
a2, · · · ,

√
ak,

√
b1,
√
b2, · · · ,

√
bk are linear independent overQ. So

|
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(
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(−1)|S
′∩S|αSB

′
S)| ≥ 1

Thus

|c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk| (4)

≥ 1∏
|S′|6=∅(

∑
S⊆{1,2,··· ,m}(−1)|S′∩S|αSB′

S)
(5)

≥ 1

(2k
√
n)2|B|−1

. (6)

2

The proof relies on the fact that the norm is a nonzero integer, thus has absolute value greater
than1. Every factor in the definition of the norm is not too large (less than2k

√
n in our case),

so the smallest factor should not be too small. The technique has been used in several papers, for
example, see [2]. The estimation depends primarily on the number of factors in the definition of
the norm.

3 A corollary from the main theorem

Theorem 2 Letc1, c2, · · · , ck, d1, d2, · · · , dk be positive integers. Leta1, a2, · · · , ak, b1, b2, · · · , bk
be distinct square free positive integers less thanm. Assume thatc2i ai ≤ n for all 1 ≤ i ≤ k and
d2

i bi ≤ n for all 1 ≤ i ≤ k. Then

|c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk| > (2k

√
n)−2O(m/ log m)

.
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Proof: It is well known that the number of primes less thanm is O(m/ logm). The set of
primes less thanm generates all the positive integers less thanm. The theorem follows from the
main theorem. 2

Corollary 1 − log r(n, k) = 2O(n/ log n)

4 Conclusion remarks

In this paper, we prove an upper bound of2O(n/ log n) for − log r(n, k), by exploring the fact that
the algebraic degree of sum of2k square free positive integers can be much less than22k. We
suspect that2O(k/ log k) log n type of upper bound holds for much largern, and leave it as an open
problem.

References

[1] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable
separation bound for arithmetic expressions involving radicals.Algorithmica, 27(1):87–99,
2000.

[2] Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational numbers.SIAM
J. Comput., 29(4):1247–1256, 2000.

[3] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke. The open problems project:
Problem 33. http://maven.smith.edu/˜orourke/TOPP/.

[4] Jianbo Qian and Cao An Wang. How much precision is needed to compare two sums of
square roots of integers? Manuscript, 2005.
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