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Abstract. In this work, we count the number of ways to represent an
element in a prime finite field as a sum of elements from different multi-
ples of a small subset. More generally, we study the problem of solution
counting of certain linear equations over subsets of finite fields. We es-
tablish the basic properties about the number of solutions, and connect
the number with lower bounds of complex norms of sums of roots of
unity.
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1 Introduction

1.1 Sums of roots of unity

Finding good upper bounds for various exponential sums is one of the most
important problems of analytic number theory. Estimating lower bounds for
exponential sums is less studied but is also an interesting problem in the theory
of Diophantine Approximation. In this paper, we relate the problem of lower
bounds on sums of roots of unity to a certain counting problem in finite fields.
A similar but different connection was made in the work of Myerson [11, 12].

Let k < T be positive integers. Consider α a sum of k roots of unity of orders
dividing T . Let L(α) be the product of conjugates of α with complex norm less
than 1. Define f(k, T ) to be the least absolute value of the non-zero α’s:

f(k, T ) = min

{∣∣∣∣∣
k∑
i=1

ζT
ai

∣∣∣∣∣ | (a1, a2, . . . , ak) ∈ (Z/TZ)k,

k∑
i=1

ζT
ai 6= 0

}
.

One can also consider a variant f ′(k, T ) of f(k, T ) such that the roots of unity
are required to be different. Namely,

f ′(k, T ) = min

{∣∣∣∣∣∑
a∈S

ζT
a

∣∣∣∣∣ | S ⊂ (Z/TZ), |S| = k

}
.



The problem of determining the optimal lower bound of f(k, T ) or f ′(k, T )
has appeared in different settings. For example, for the sake of studying cer-
tain non-interference problem from the theory of Riemann zeta function, Little-
wood [10] considered bounds of sums of cosines. Given a circulant matrix with
the first row (c0, c1, . . . , cT−1), the eigenvalues of the matrix are of the form∑T−1
i=0 ciζ

ik
T for 0 ≤ k ≤ T − 1 [14]. Graham and Sloane [4] asked about the low-

er bound of f(k, T ) in the context of considering certain values attached with
binary matrices. This problem also has connection to the growth rate of peri-
odic points of actions of Zk by automorphisms of compact abelian groups [15,
Chapter 19].

Konyagin and Lev [8] considered the distribution of the exponential sums
SA(z) =

∑
a∈A ζ

az
p , where A ⊂ Fp,|A| = k,z ∈ Fp. They gave a lower bound on

the complex value |SA(z)| that decreases exponentially in the prime modulus p.
Some estimates on the norms of Gaussian periods were obtained by Myerson [12],
Habegger [6] and Dimitrov [1, 2].

In [13], Myerson proposed the problem of finding tight bounds on the complex
norms of f(k, T ) and L(α). He showed that f(k, T ) ≥ ckT

−1 for k = 2, 3, and
f(4, T ) ≥ c4T−2, where ck is a positive constant depending on k. In general, since
the norm of a non-vanishing algebraic integer is a non-zero rational integer, it
follows trivially that f(k, T ) ≥ k−T . It remains an open problem to improve this
sub-exponentially in −T , in the asymptotic that k is fixed and T grows.

Many researchers have expected that the tight lower bound of |α| decreases
polynomially in T . Myerson [13] has asked the following question.

Problem 1. Let k ≥ 1 be a given integer. Do there exist positive constants
ck, λk > 0 depending on k such that f(k, T ) ≥ ckT−λk for all T ≥ 1?

Some discussions about the history of Myerson’s problem can be found in [17].
In [16], Shkredov surveyed applications of harmonic analysis to combinatorial

number theory. In particular, he reformulated Myerson’s problem as bounding
the Fourier coefficients of a characteristic function, and gave an estimate by a
result of Lev [9]. Dubickas [3] studied the upper bound of L(α), solved the case
k = 2, and gave partial results for the case k = 3.

Habegger [5] presented evidence supporting an affirmative answer to Prob-
lem 1 when the moduli are prime. He proved that the set of prime orders p such
that the assertion in Problem 1 does not hold is sparse.

Theorem 1 ([5]). For given ε > 0, k ≥ 1, and a0, . . . , ak ∈ C \ {0}, there exist
constants c ≥ 1, λ ≥ 1 both depending on a0, . . . , an, ε such that

#{prime p ≤ B |∃ e1, . . . , ek ∈ Fp,
0 < |a0 + a1ζ

e1
p + · · ·+ akζ

ek
p | ≤ c−1p−λ} ≤ cBε

for all B ≥ 1.

In this work, we connect lower bounds of sums of unity with the number of
solutions of certain linear equations over subsets of a finite field.

2



Definition 1. Let p be an odd prime, S ⊂ Z/pZ, |S| = k. Define two functions
F : Fp−1p → Fp and fa : Fp−3p → Fp by

F = x1 + 2x2 + · · ·+ (p− 2)xp−2 + (p− 1)xp−1,

fa = F − axa − (p− a)xp−a,

where 1 ≤ a ≤ p−1
2 . Denote

NS(i) = #{XF ∈ Sp−1|F (XF ) = i}, 1 ≤ i ≤ p− 1,

NS(a, b) = #{Xf ∈ Sp−3|fa(Xf ) = b}, 1 ≤ b ≤ p− 1,

We will omit the subscript S if it is clear from the context.

Equivalently, given an element a ∈ Fp, we consider the problem of counting
the number of ways of representing a as a sum of elements ai ∈ ciS, with ci ∈ F∗p
distinct.

We show that there is a precise relation between f ′(k, p), N(1, 0) and N(0).

Theorem 2. Let k < p.We have

1

f ′(k, p)2
≤ max
S⊂(Z/pZ),|S|=k

(p− 1)
NS(1, 0)− kp−3/p
NS(0)− kp−1/p

≤ p− 1

f ′(k, p)2
.

Equivalently,

f ′(k, p)2 ≥ min
S⊂(Z/pZ),|S|=k

1

p− 1

NS(0)− kp−1/p
NS(1, 0)− kp−3/p

≥ 1

p− 1
f ′(k, p)2.

1.2 Upper bounds of TrQ(ζp)/Q(|α|−2)

Let p be an odd prime. Motivated by the study of f ′(k, p), we take the approach
of transforming the problem from considering lower bounds to upper bounds. Let
σt ∈ Gal(Q(ζp)/Q) be such that σt(ζp) = ζtp for 1 ≤ t ≤ p− 1, and α =

∑
i∈S ζ

i
p.

Since |α| is small precisely when TrQ(ζp)/Q(|α|−2) is large, it is of interest to
compute the latter trace. We deduce

TrQ(ζp)/Q(|α|−2) =

p−1∑
t=1

1

(
∑
i∈S σt(ζ

i
p))(

∑
i∈S σt(ζ

i
p))

=

∑
1≤k≤p−1

∏
j 6=k,j 6=p−k(

∑
i∈S(ζjp)i)

NormQ(ζp)/Q(
∑
i∈S ζ

i
p)

.

We connect the number of solutions N(i), N(a, b) to the complex norm of
sums of roots of unity.

Theorem 3. Let ζp = e
2πi
p ,σt(ζp) = ζtp,S ⊂ Z/pZ, |S| = k. Then

p−1∑
t=1

1

(
∑
i∈S σt(ζ

i
p))(

∑
i∈S σt(ζ

i
p))

= (p− 1)
N(1, 0)− kp−3/p
N(0)− kp−1/p

.
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1.3 Solution counts

We first establish the properties of number of solutions N(i) in Definition 1.

Theorem 4. Let p be an odd prime. Fix a subset S ⊂ Z/pZ, |S| = k. Then

(1) N(i) = N(j), 1 ≤ i < j ≤ p− 1.
(2) Denote N = N(i), 1 ≤ i ≤ p− 1. Then

N(0)−N = NormQ(ζp)/Q

(∑
i∈S

ζip

)
.

(3) 
N(0) =

kp−1 + (p− 1)NormQ(ζp)/Q
(∑

i∈S ζ
i
p

)
p

,

N =
kp−1 −NormQ(ζp)/Q

(∑
i∈S ζ

i
p

)
p

.

For a fixed k, we also discuss the problem of the number of all possible
(N(0), N) pairs for all S ⊂ Fp, |S| = k.

We then consider the number of solutions N(a, b).

Theorem 5. Let p be an odd prime. Fix S ⊂ Z/pZ, |S| = k. Then

(1) N(a, b) = N(a, p− b) for 1 ≤ a, b ≤ p−1
2 .

(2) Let 1 ≤ a1, a2 ≤ p−1
2 , 0 ≤ b1, b2 ≤ p− 1. If b2 = a−11 a2b1, then N(a1, b1) =

N(a2, b2).
(3) Let mi,j = N(i,−j−1), then the matrix M = (mi,j) p−1

2 ×
p−1
2

is symmetric.

(4) Suppose the eigenvalues of M is ordered as

µ0 ≥ µ1 ≥ · · · ≥ µ p−1
2 −1

.

Then
(a) µ0 =

∑
1≤b≤ p−1

2
N(a, b) for every 1 ≤ a ≤ p−1

2 .

(b) For any a, b ∈ Fp, the number N(a, b) of solutions X ∈ Fp−3p to the
equation fa(X) = b satisfies∣∣∣∣N(a, b)− µ0

(p− 1)/2

∣∣∣∣ ≤ max{|µ1|, |µ p−3
2
|}.

The rest of the paper is organized as follows. In Section 2, we demonstrate
the proof of Theorem 4 and Theorem 5. Besides, we present some corollaries and
further discussions. In Section 3, we give the proof of Theorem 2 and Theorem 3.

2 Number of solutions of the linear equations

In this section, we demonstrate basic properties of the linear forms defined in
Definition 1.
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2.1 Properties of N(i)

We first establish the properties of the function N(i).
Proof of Theorem 4: (1) We want to show that

N(i) = N(j), 1 ≤ i < j ≤ p− 1.

For each solution of F (t1, . . . , tp−1) = i 6= 0, we multiply i−1j on both sides and
obtain equality F (i−1jt1, . . . , i

−1jtp−1) = j. Furthermore, different solutions of
F = i correspond to different solutions of F = j. Hence N(i) ≤ N(j). By
symmetry, we have N(i) ≥ N(j). Thus N(i) = N(j).

(2) In the sequel, we will denote N = N(i), 1 ≤ i ≤ p−1. For t ∈ Fp, consider
the field automorphism σt ∈ Gal(Q(ζp)/Q) defined by σt(ζp) = ζtp. Then

NormQ(ζp)/Q

(∑
i∈S

ζip

)
=

p−1∏
i=1

σi

(∑
x∈S

ζxp

)

=

p−1∏
i=1

(∑
x∈S

ζixp

)

=

p−1∑
i=0

niζ
i
p,

where ni = |{(x1, . . . , xp−1) ∈ Sp−1|
∑p−1
j=1 jxj = i}| = N(i) = N for 1 ≤ i ≤

p− 1. Since N(i) = N for i ∈ F∗p,
∑p−1
i=0 ζ

i
p = 0 for 1 ≤ i ≤ p− 1, we have

NormQ(ζp)/Q

(∑
i∈S

ζip

)
= N(0) +N

p−1∑
i=1

ζip

= N(0)−N.

(4) We deduce the following linear equations{
N(0) + (p− 1)N = kp−1

N(0)−N = NormQ(ζp)/Q(
∑
i∈S ζ

i
p).

Thus the simultaneous solution of the linear equations yields
N(0) =

kp−1 + (p− 1)NormQ(ζp)/Q(
∑
i∈S ζ

i
p)

p

N =
kp−1 −NormQ(ζp)/Q(

∑
i∈S ζ

i
p)

p
.

ut

Remark 1. By Theorem 4, it is equivalent to evaluate NormQ(ζp)/Q
(∑

i∈S ζ
i
p

)
and to evaluate N(0) and N .
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Corollary 1. Let a ∈ Fp, d ∈ F∗p, S = {a, a+d, . . . , a+(k−1)d} be an arithmetic
progression. Then 

N(0) =
kp−1 + p− 1

p
,

N =
kp−1 − 1

p
.

Proof. We first evaluate NormQ(ζp)/Q

(∑d−1
i=0 ζ

a+d·i
p

)
. We have

NormQ(ζp)/Q

(
d−1∑
i=0

ζa+d·ip

)

=NormQ(ζp)/Q
(
ζap
)
·NormQ(ζp)/Q

(
d−1∑
i=0

ζd·ip

)

=NormQ(ζp)/Q
1− ζkdp
1− ζdp

=
NormQ(ζp)/Q

(
1− ζkdp

)
NormQ(ζp)/Q

(
1− ζdp

)
=1,

where the last equation follows as 1−ζkdp and 1−ζdp are conjugate to each other.
Thus the results follows from Theorem 4. ut

Number of different pairs of (N(0), N): Fix a positive number k < p.
In general, there are

(
p
k

)
possibilities for S. But the pairs (N(0), N) may be the

same for different subsets. In the following, we use Burnside’s lemma to compute
the number of pairs (N(0), N) on the example p = 7, k = 3.

Lemma 1 (Burnside’s lemma). Let G be a finite group that acts on a set X
with orbit number |X/G|. For any g ∈ G, denote Xg the set of elements fixed by
g. Then

|X/G| = 1

|G|
∑
g∈G
|Xg|.

Proposition 1. Let k < p, S1 = {a1, a2, . . . , ak} ⊂ Fp, S2 = {b1, b2, . . . , bk} ⊂
Fp. If there is a linear map

T : S1 −→ S2

xi 7−→ cxi + d

where c ∈ F∗p, d ∈ Fp, then NS1
(i) = NS2

(i) for i ∈ Fp.

Proof. Suppose

F (x1, . . . , xp−1) = i, xj ∈ S1, 1 ≤ j ≤ p− 1.
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Then F (cx1 + d, . . . , cxp−1 + d) = c · i. Thus each solution in S1 corresponds
to a solution in S2 by T . Furthermore, different solutions in S1 correspond to
different solutions in S2 by T . Hence NS1(i) ≤ NS2(c ·i) = NS2(i). By symmetry,
NS1(i) ≥ NS2(i). Consequently, we have NS1(i) = NS2(i). ut

Example 1. Let p = 7, k = 3, we determine the number of different pairs N(0), N
over all subsets of 3 elements.

Let A = {S ⊂ F7 | |S| = 3}, G = {Tc,d : S1 → S2 | Tc,d(s) = cs + d, c, d ∈
F7, c 6= 0}. Then G acts on A, we first determines the number of orbits. Let AT

be the set of invariant elements under the action of T . By computation, we have

AT1,0 = 35,

AT2,i = 2, 0 ≤ i ≤ 6,

AT4,i = 2, 0 ≤ i ≤ 6,

AT6,i = 3, 0 ≤ i ≤ 6,

and the numbers not listed above are all 0. By Burnside’s lemma, we have the
number of orbits

|A/G| = 1

|G|
∑
g∈G
|Ag|

=
1

42
(1× 35 + 2× 14 + 3× 7)

= 2.

In fact, there are only two possibilities of pairs (N(0), N) as follows.

N(0) = 105, N = 104,

N(0) = 111, N = 103.

For example, the first pair arise when S = {1, 2, 3}, and the second pair arise
when S = {1, 2, 4}.

2.2 Properties of N(a, b)

In this section, we consider properties of the number N(a, b) of solutions of
fa = b.

We recall the expander mixing lemma first which we will use later. For a
more detailed explanation, we refer the reader to [7, Lemma 2.5].

Lemma 2 (Expander Mixing Lemma). Let G = (V,E), |V | = n be a d =
µ0-regular graph with adjacency matrix M . Let the eigenvalues of M be µ0 ≥
µ1 ≥ · · · ≥ µn−1. Let λ = max(|µ1|, |µn−1|). For all S, T ⊂ V , let E(S, T ) =
{(u, v) ∈ E | u ∈ S, v ∈ T}. Then∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |.
7



Proof of Theorem 5: (1) By definition,

fa = F − axa − (p− a)xp−a. (1)

If the vector Xf ∈ Sp−3 is a solution for fa = b, then we conclude that Xf cor-
responds a solution for fa = p−b by multiplying −1 to both sides of Equation 1.
Thus N(a, b) ≤ N(a, p− b). By symmetry, we have N(a, b) ≥ N(a, p− b), which
implies N(a, b) = N(a, p− b).

(2) Suppose X ∈ Sp−3 is a solution of the equation

F − a1xa1 − (p− a1)xp−a1 = b1.

Multiplying both sides by a−11 a2, we get

F − a2xa2 − (p− a2)xp−a2 = a−11 a2b1.

Thus N(a1, b1) ≤ N(a2, b2) where b2 = a−11 a2b1. By symmetry N(a1, b1) ≥
N(a2, b2). Hence N(a1, b1) = N(a2, b2).

(3) By definition mi,j = N(i,−j−1), in order to show the matrix M =
(mi,j) p−1

2 ×
p−1
2

is symmetric, it suffices to verify that

N(i,−j−1) = N(j,−i−1).

This is a special case of (2).
(4) By (3), the sum

∑
1≤b≤(p−1)/2N(a, b) is independent of a. Consequently,

this common value equals µ0, and the non-oriented graph G(M) defined by the
adjacency matrixM is µ0-regular. The result now follows by the expander mixing
lemma. ut

Example 2. Let p = 13, k = 5, S = {2, 5, 7, 9, 12}. We have

M =


751203 751199 751205 751200 751204 751198
751199 751200 751198 751204 751205 751203
751205 751198 751200 751203 751199 751204
751200 751204 751203 751205 751198 751199
751204 751205 751199 751198 751203 751200
751198 751203 751204 751199 751200 751205

 ,

where the element at the i-th row and j-th column is mi,j = N(i,−j−1).

3 Relation with sums of roots of unity

In this section, we connect the number of solutions of equations over subsets of
finite fields and the complex norm of sums of roots of unity.
Proof of Theorem 3: First, we make the following transform.

p−1∑
t=1

1

(
∑
i∈S σt(ζ

i
p))(

∑
i∈S σt(ζ

i
p))

=

∑
1≤k≤p−1

∏
j 6=k,j 6=p−k(

∑
i∈S(ζjp)i)

Norm(
∑
i∈S ζ

i
p)

.
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Next, we calculate the denominator and numerator respectively. From Theo-
rem 4, we have

NormQ(ζp)/Q

(∑
i∈S

ζip

)
= N(0)−N.

For the numerator, we compute

∑
1≤k≤p−1

∏
j 6=k,j 6=p−k

(∑
i∈S

(ζjp)i

)
=

∑
1≤k≤p−1

N(k, 0) +
∑

1≤i≤p−1

N(k, i)ζip


= (p− 1)N(1, 0) +

∑
1≤i≤p−1

 ∑
1≤k≤p−1

N(k, i)

 ζip

= (p− 1)N(1, 0) +
∑

1≤i≤p−1

Aζip

= (p− 1)N(1, 0)−A,

where A = kp−3 −N(1, 0). Consequently,

p−1∑
t=1

1

(
∑
i∈S σt(ζ

i
p))(

∑
i∈S σt(ζ

i
p))

=
(p− 1)N(1, 0)−A

N(0)−N

=
pN(1, 0)− kp−3

N(0)− (kp−1 −N(0))/(p− 1)

= (p− 1)
N(1, 0)− kp−3/p
N(0)− kp−1/p

.

ut
Remark 2. Note that kp−3

p is the average number of solutions for fa = b, thus

N(1, 0)− kp−3

p measures the difference of N(1, 0) and the average number. Sim-

ilarly, kp−1

p is the average number of solutions for F = i, thus N(0) − kp−1

p

measures the difference of N(0) and the average number.

Proof of Theorem 2: This follows directly from Theorem 3. ut
Corollary 2. For given ε > 0, k ≥ 1, there exists constants c depending on ε
such that

#{p ≤ B is a prime | ∃S ⊂ (Z/pZ), |S| = k,
NS(1, 0)− kp−3/p
NS(0)− kp−1/p

≥ pc} ≤ cBε

for all B ≥ 1.

Proof. Recall that f(k, T ) denotes the least complex value of k T -th roots of
unity. We have

p−1∑
t=1

1

(
∑
i∈S σt(ζ

i
p))(

∑
i∈S σt(ζ

i
p))
≤ p− 1

f ′(k, p)2
≤ pf(k, p)−2.

The result follows from a combination of Theorem 1 and Theorem 3. ut
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