
Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Traps to the BGJT-Algorithm for Discrete Logarithms
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Abstract

In the recent breakthrough paper by Barbulescu, Gaudry, Joux and Thomé, a quasi-polynomial
time algorithm (QPA) is proposed for the discrete logarithm problem over finite fields of small
characteristic. The time complexity analysis of the algorithm is based on several heuristics
presented in their paper. We show that some of the heuristics are problematic in their original
forms, in particular, when the field is not a Kummer extension. We propose a fix to the algorithm
in non-Kummer cases, without altering the heuristic quasi-polynomial time complexity. Further
study is required in order to fully understand the effectiveness of the new approach.
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1. Introduction

Many cryptography protocols rely on hard computational number theoretical problems
for security. The discrete logarithm problem over finite fields is one of the most important
candidates, besides the integer factorization problem. The hardness of discrete logarithms
underpins the security of the widely adopted Diffie-Hellman key exchange protocol [5] and
ElGamal’s cryptosystem [6].

The state-of-the-art general-purpose methods for solving the discrete logarithm problem in
finite fields are the number field sieve and the function field sieve, which originated from the
index-calculus algorithm. All the algorithms run in subexponential time. Let

LN (α) = exp(O((logN)α(log logN)1−α)).

For a finite field Fq, successful efforts have been made to reduce the heuristic complexity of
these algorithms from Lq(1/2) to Lq(1/3). See [17, 1, 15, 4, 9, 2, 13, 14].

A sequence of breakthrough results [11, 12, 8] recently on the discrete logarithm problem
over finite fields culminated in a discovery of a quasi-polynomial algorithm for small character-
istic fields [3]. For a finite field Fq2k with k < q, their algorithm runs in heuristic time qO(log k).
This result, if correct, essentially removes the discrete logarithm over small characteristic fields
from hard problems in cryptography. It also helps in constructing multiplicative generators in
finite fields [10].

1.1. Where does the computation really happen?

Most serious attacks on the discrete logarithm problem over finite fields are based on
smoothness of integers or polynomials. A polynomial is m-smooth if all its irreducible factors
have degrees ≤ m. The probability that a random polynomial of degree n (≥ m ) over a finite
field Fq is m−smooth is about (n/m)−n/m [16].

Suppose that we need to compute discrete logarithm in the field Fq2k where q > k > 1. A
main technique in [3], which bases on smooth polynomials, is to find a nice ring generator ζ of
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Fq2k = Fq2 [ζ] over Fq2 satisfying

xq = h0(x)/h1(x),

where h1 and h0 are polynomials of very small degree. In many places of the computation,
polynomial degrees can be dropped quickly by replacing xq with h0(x)/h1(x), which allows an
effective attack based on smoothness.

The main issue with this approach is that the computation really takes place in the ring
Fq2 [x]/(xqh1(x)− h0(x)), where in the analysis of [3], the computation is assumed to be in
Fq2 [x]/(f(x)), where f(x) is the minimal polynomial of ζ over Fq2 . Since f(x) divides xqh1(x)−
h0(x), there is a natural surjective ring homomorphism

Fq2 [x]/(xqh1(x)− h0(x))→ Fq2 [x]/(f(x)).

But the former ring, which is a direct sum of the latter field (if f(x) is a simple factor of
xqh1(x)− h0(x)) and a few other rings, is much larger in many cases. The computation thus
can be affected by the other rings, rendering several conjectures in [12, 3] problematic.

1.2. Our work

Interestingly, for the Kummer extension of the form Fq2 [x]/(xq−1 − a), everything is fine.
This is because the difference between the ring Fq2 [x]/(xq − ax) and the field is rather small.
The discrete logarithm of x, which is a zero divisor in the former ring, can be computed easily
in the latter field, since it belongs to a subgroup of a small order ( dividing (q − 1)(q2 − 1)) in
the field. This is consistent with all announced practical implementations.

However, in case of more difficult non-Kummer extensions, we discover that there are multiple
problems. First, if xqh1(x)− h0(x) has linear factors over Fq2 , the discrete logarithms of these
linear factors cannot be computed in polynomial time, invalidating a basic assumption in [3].
One can verify that most of polynomials given in [12, Table 1] have linear factors. Second,
even at the stage of finding discrete logarithms of linear elements, we show that there are
additional serious restrictions on the choice of h0 and h1. For example, if xqh1(x)− h0(x)
has another irreducible factor over Fq2 of degree ki satisfying gcd(ki, k) > 1, we do not see
how the algorithm can work. See Theorem 2 for details. We propose to select h0 and h1 such
that xqh1(x)− h0(x) has only one irreducible factor f(x) over Fq2 of degree k, and all other
irreducible factors over Fq2 have degrees bigger than one and relatively prime to k. Under
these assumptions, we give an algorithm which will find the discrete logarithm of any linear
element in polynomial time, under a heuristic assumption supported by our theoretical results
and numerical data.

For a non-linear element, a clever idea, the so-called QPA-descent, was proposed in [3]
to reduce its degree, until its relation to linear factors can be found. While the above two
problems about linear factors can be fixed under our newly improved heuristic assumptions,
another serious problem is that there are traps in the QPA-descent. For these traps, the QPA-
descent described in [3] will not work at all. They will also block the descent of other elements,
hence severely affecting the usefulness of the new algorithm. We propose a descent strategy
that avoids the traps, without altering the quasi-polynomial time complexity. The modified
algorithm is also heuristic. We have done a few numerical studies to confirm the heuristic.

In summary, for large non-Kummer fields, we believe that the basic idea behind the new
approach should still work, but the problem can be significantly more subtle than previously
thought and further study needs to be conducted in order to fully understand the effect of the
new algorithm.
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2. Finding the discrete logarithm of the linear factors

We first review the new algorithm in [3]. Suppose that the discrete logarithm is sought over
the field Fq2k with k < q. For other small characteristic fields, for example, Fpk ( p < k ), one
first embeds it into a slightly larger field:

Fpk → Fqk → Fq2k

where q = pdlogp ke. A quasi-polynomial time algorithm for Fq2k implies a quasi-polynomial
time algorithm for Fpk . We assume that

Fq2k = Fq2 [ζ]

where ζq = h0(ζ)
h1(ζ)

. Here h0 and h1 are polynomials over Fq2 relatively prime to each other, and of

a constant degree. In particular, deg(h0) < q + deg(h1). To find such a nice ring generator ζ, one
searches over all the polynomials h0(x) and h1(x) of a constant degree in Fq2 [x], until h1(x)xq −
h0(x) has an irreducible factor f(x) of degree k with multiplicity one. Let the factorization be

xqh1(x)− h0(x) = f(x)

l∏
i=1

(fi(x))ai (2.1)

where the polynomials f(x) and fi(x)’s are irreducible and pair-wise prime. Denote the degree
of fi(x) by ki.

Remark 1. In practice, it is enough to search only a quadratic polynomial h0 (not
necessarily monic) and a monic linear polynomial h1 in Fq2 [x]. However proving the existence
of such polynomials for any constant degree such that xqh1(x)− h0(x) has the desired
factorization pattern seems to be out of reach by current techniques.

For simplicity we assume that h1(x) is monic and linear. Most of the known algorithms start
by computing the discrete logarithms of elements in a special set called a factor base, which
usually contains small integers, or low degree polynomials. In the new approach [12, 3], the
factor base consists of the linear polynomials ζ + α for all α ∈ Fq2 , and an algorithm is designed
to compute the discrete logarithms of all the elements in the factor base. It is conjectured that
this algorithm runs in polynomial time. One starts the algorithm with the identity:∏

α∈Fq

(x− α) = xq − x.

Then apply the Mobius transformation

x 7→ ax+ b

cx+ d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2 is nonsingular. We have

∏
α∈Fq

(
ax+ b

cx+ d
− α) = (

ax+ b

cx+ d
)q − ax+ b

cx+ d

Clearing the denominator:

(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (ax+ b)q(cx+ d)− (ax+ b)(cx+ d)q

= (aqxq + bq)(cx+ d)− (ax+ b)(cqxq + dq).
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Multiplying both sides by h1(x) and replacing xqh1(x) by h0(x), we obtain

h1(x)(cx+ d)
∏
α∈Fq

((ax+ b)− α(cx+ d))

= (aqh0(x) + bqh1(x))(cx+ d)− (ax+ b)(cqh0(x) + dqh1(x))

(mod xqh1(x)− h0(x)).

If the right-hand side can be factored into a product of linear factors over Fq2 , we obtain a
relation of the form

λe0
q2∏
i=1

(x+ αi)
ei =

q2∏
i=1

(x+ αi)
e′i (mod xqh1(x)− h0(x)), (2.2)

where λ is a multiplicative generator of Fq2 , α1 = 0, α2, α3, . . . , αq2 is a natural ordering of
elements in Fq2 , and ei’s and e′i’s are non-negative integers.

Following the same notations in [3], let Pq be a set of representatives of the left cosets of
PGL2(Fq) in PGL2(Fq2). Note that the cardinality of Pq is q3 + q. It was shown in [3] that
the matrices in the same coset produce the same relation (2.2).

Suppose that for some 1 ≤ g ≤ q2, ζ + αg is a known multiplicative generator of Fq2 [ζ] =
Fq2 [x]/(f(x)). Since (2.2) also holds modulo f(x), taking the discrete logarithm w.r.t. the base
ζ + αg, we obtain

e0 logζ+αg λ+
∑

1≤i≤q2,i6=g

(ei − e′i) logζ+αg (ζ + αi) ≡ e′g − eg (mod q2k − 1). (2.3)

The above equation gives us a linear relation among the discrete logarithm of linear factors.
One hopes to collect enough relations such that the linear system formed by those relations is
non-singular over Z/(q2k − 1)Z. It allows us to solve logζ+αg (ζ + αi) for all the ζ + αi in the
factor base.

However, if for some 1 ≤ z ≤ q2,

(x+ αz)|xqh1(x)− h0(x),

the algorithm will unlikely compute logζ+αg (ζ + αz). It is because that x+ αz is zero or
nilpotent (w.l.o.g. let f1 = x+ αz) in the Fq2 [x]/((x+ αz)

a1) component of the ring

Fq2 [x]/(xqh1(x)− h0(x)) = Fq2 [x]/(f(x))⊕
l⊕
i=1

Fq2 [x]/(fi(x)ai).

Hence in (2.2), if ez > 0, e′z is positive as well. Most likely we will have ez = e′z, so the coefficient
for logζ+αg (ζ + αz) in (2.3) will always be 0.

Remark 2. If e′z > ez ≥ 1, it is possible to compute logζ+αg (ζ + αz). However, this requires

the low degree polynomial in the right hand side of (2.2) to have the factor (x+ αz)
2, which

is unlikely. Our numerical data confirm that it never happens when q is sufficiently large.

To compute the discrete logarithm of ζ + αz, we have to use additional relations which hold
for the field Fq2 [ζ] but may not hold for the bigger ring Fq2 [x]/(xqh1(x)− h0(x)). The equation

(ζ + αz)
q2k−1 = 1

is such an example. But this does not help in computing its discrete logarithm in the field
Fq2 [ζ], if it is the only relation involving ζ + αz.
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Remark 3. An exception is in the case of a Kummer extension, where the zero divisor x
in the ring has a small order in the field.

In general, it is hard to find useful additional relations for x+ αz, since for the algorithm to
work, it is essential that we replace xq by h0(x)/h1(x) (not replace f(x) by zero) in the relation
generating stage. Hence it is not clear that the discrete logarithm of ζ + αz can be computed
in polynomial time, invalidating a conjecture in [3].

3. The tale of two lattices

To fix the above problem in a non-Kummer case, we can either change our factor base to
not include the linear factors of xqh1(x)− h0(x), or we can search for h0 and h1 such that
xqh1(x)− h0(x) does not have linear factors. In the following discussion, we will assume that
xqh1(x)− h0(x) has no linear factor for simplicity. That is,

ki := deg(fi) ≥ 2 (1 ≤ i ≤ l).

In this case, the linear factors x+ αi’s are invertible in the ring Fq2 [x]/(xqh1(x)− h0(x)) and
equation (2.2) reduces to

λe0
q2∏
i=1

(x+ αi)
ei−e′i = 1 (mod xqh1(x)− h0(x)). (3.1)

We define two fundamental lattices in Zq
2+1:

L1 = {(e0, e1, . . . , eq2)|λe0
q2∏
i=1

(x+ αi)
ei = 1 (mod f(x))},

L2 = {(e0, e1, . . . , eq2)|λe0
q2∏
i=1

(x+ α1)ei = 1 (mod xqh1(x)− h0(x))}.

It is easy to see that L2 ⊆ L1. Consider the group homomorphism

ψ1 : Zq
2+1 → (Fq2 [x]/(f(x)))∗

given by

(e0, e1, . . . , eq2) 7→ λe0
q2∏
i=1

(x+ αi)
ei .

The group homomorphism ψ2 is defined in the same way, except that modulo f(x) is replaced
by modulo (xqh1(x)− h0(x)) respectively.

Theorem 1. If deg(h1) ≤ 2, then the maps ψ1 and ψ2 are surjective.

Proof. It is enough to prove that ψ2 is surjective. If not, the image H of ψ2 would be a
proper subgroup of (Fq2 [x]/(xqh1(x)− h0(x)))∗. We can then choose a non-trivial character
χ of (Fq2 [x]/(xqh1(x)− h0(x)))∗ which is trivial on the subgroup H. Since χ is trivial on H
which contains F∗q2 , we can use the Weil bound as given in Theorem 2.1 in [18] and deduce
that

1 + q2 = |1 +
∑

α∈Fq2

χ(x+ α)| ≤ (q + deg(h1)− 2)
√
q2 ≤ q2.
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This is a contradiction. It follows that ψ2 must be surjective.

Note that the determination of the factor base discrete logarithms corresponds to the
computation of Smith Normal Form of L1, which has been observed in many places, e.g.
[7]. In this application it is important that ψ1 is surjective. As a corollary, we deduce

Corollary 1. If deg(h1) ≤ 2, then

– the group Zq
2+1/L1 is isomorphic to the cyclic group Z/(q2k − 1)Z.

– the group Zq
2+1/L2 is isomorphic to

Z/(q2k − 1)Z⊕
l⊕
i=1

Z/(q2ki − 1)Z
⊕

(a finite p-group).

In particular, the group Zq
2+1/L2 is not cyclic when l ≥ 1. The relation generation stage

only gives lattice vectors in L2, which is far from the L1 if l ≥ 1. Thus, we need to add more
relations to L2 in order to get close to L1.

Since λq
2−1 = 1, the vector (q2 − 1, 0, · · · , 0) is automatically in L2. Let L∗2 be the lattice in

Zq
2+1 generated by L2 and the following q2 vectors

(0, q2k − 1, 0, · · · , 0), · · · , (0, 0, · · · , 0, q2k − 1),

corresponding to the relations (x+ αi)
q2k−1 = 1 modulo f(x) for αi ∈ Fq2 . It is clear that

L∗2 = L2 + (q2k − 1)Zq
2+1.

The next result gives the group structure for the quotient Zq
2+1/L∗2.

Theorem 2. For deg(h1) ≤ 2, there is a group isomorphism

Zq
2+1/L∗2 ∼= Z/(q2k − 1)Z⊕

⊕
1≤i≤l

Z/(q2 gcd(k,ki) − 1)Z.

Proof. Recall that

Zq
2+1/L2

∼= A
def
= Z/(q2k − 1)Z⊕

l⊕
i=1

Z/(q2ki − 1)Z
⊕

(a finite p-group).

It is clear that

A/(q2k − 1)A ∼= Z/(q2k − 1)Z⊕
⊕
1≤i≤l

Z/(q2 gcd(ki,k) − 1)Z.

The kernel of the surjective composed homomorphism

Zq
2+1 −→ Zq

2+1/L2
∼= A −→ A/(q2k − 1)A

is precisely L2 + (q2k − 1)Zq
2+1 = L∗2. The desired isomorphism follows.

If gcd(ki, k) > 1 for some i, then L∗2 is still far from L1. We would like L∗2 to be as close to
L1 as possible in a smooth sense. For us, the more interesting case is the following
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Corollary 2. Let deg(h1) ≤ 2. If gcd(ki, k) = 1 for all 1 ≤ i ≤ l, we have an isomorphism

Zq
2+1/L∗2 ∼= Z/(q2k − 1)Z⊕ (Z/(q2 − 1)Z)l.

This corollary shows that under the same assumption, the lattice L∗2 is a smooth approx-
imation of L1 in the sense that the quotient L1/L∗2 is a direct sum of small order cyclic
groups.

The algorithm to compute the discrete logarithms in the factor base essentially samples
vectors from the lattice L2. Let r1, r2, . . . , be the vectors in L2 obtained by the relation-finding
algorithm, i.e., from the relations in (3.1). Let L̂2 be the lattice generated by those vectors.
Let L̂1 be the lattice generated by L̂2 and the following q2 + 1 vectors:

(q2 − 1, 0, · · · , 0), (0, q2k − 1, 0, · · · , 0), · · · , (0, 0, · · · , 0, q2k − 1).

Computing the Hermite (or Smith) Normal Form of L̂1 is equivalent to solving the linear system
L̂2 in the ring Z/(q2k − 1)Z. It is in general difficult to find bases for the two lattices L1 and
L2 directly. One can think that L̂1 and L̂2 are the approximations of L1 and L2 respectively.
These approximations can be computed by the polynomial time algorithm. Obviously,

L̂2
⊆ L2 ⊆
⊆ L̂1 ⊆

L∗2 ⊆ L1.

These inclusions induce surjective group homomorphisms

Zq
2+1/L̂2

→ Zq
2+1/L2 →

→ Zq
2+1/L̂1 →

Zq
2+1/L∗2 → Zq

2+1/L1.

If Zq
2+1/L̂2 is cyclic, then its quotient Zq

2+1/L2 will be cyclic. This is false if l ≥ 1 as we have

seen before. Similarly, Zq
2+1/L̂1 is not cyclic as its quotient Zq

2+1/L∗2 is not cyclic if l ≥ 1. It
seems reasonable to hope that L̂1 is a good approximation to L∗2 in the sense that the quotient
L∗2/L̂1 is a direct sum of small order cyclic groups. In the interesting case when gcd(k, ki) = 1
for all 1 ≤ i ≤ l, our numerical data suggest the following highly plausible

Heuristic 1. Assume that xqh1(x)− h0(x) does not have linear factors, and gcd(k, ki) = 1
for all 1 ≤ i ≤ l. Then in the Smith Normal Form of L̂1, the diagonal elements are

1, 1, · · · , 1, s1, · · · , st, q2k − 1,

where for 1 ≤ i ≤ t, si > 1 and si|q2 − 1.

Assuming the heuristic, Zq
2+1/L̂1 is not much bigger than Zq

2+1/L1, namely,

Zq
2+1/L̂1

∼= Z/s1Z⊕ Z/s2Z⊕ · · · ⊕ Z/stZ⊕ Z/(q2k − 1)Z.

We can find a generator for each component, as a product of linear polynomials from the
computation of the Smith Normal Form. Suppose that for 1 ≤ i ≤ t, the generator for the i-th
component is

λei0
∏

1≤j≤q2
(x+ αj)

eij .

Since si|q2 − 1, the above generator belongs to Fq2 in Fq2 [x]/(f(x)). Assuming that it is λe
′
i0 ,

we have

λei0−e
′
i0

∏
1≤j≤q2

(x+ αj)
eij = 1 (mod f(x)).
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There are t such relations. Adding them to L̂1, we will finally arrive at the lattice L1. It allows
us to find a generator for (Fq2 [x]/(f(x)))∗, and to solve the discrete logarithms for the factor
base, w.r.t. this generator.

4. The trap to the QPA-descent

Now we review the QPA-descent. Suppose that we need to compute the discrete logarithm of
W (ζ) ∈ Fq2k [ζ], where W is a polynomial over Fq2 of degree w > 1. The QPA-descent, firstly
proposed in [3], is to represent W (ζ) as a product of elements of smaller degree, e.g. ≤ w/2,
in the field Fq2 [x]/(f(x)). To do this, one again starts with the identity:∏

α∈Fq

(x− α) = xq − x.

Then apply the transformation

x 7→ aW (x) + b

cW (x) + d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2 is nonsingular. We have

∏
α∈Fq

(
aW (x) + b

cW (x) + d
− α) = (

aW (x) + b

cW (x) + d
)q − aW (x) + b

cW (x) + d
.

Clearing the denominator:

(cW (x) + d)
∏
α∈Fq

((aW (x) + b)− α(cW (x) + d))

= (aW (x) + b)q(cW (x) + d)− (aW (x) + b)(cW (x) + d)q

= (aqW̃ (xq) + bq)(cW (x) + d)− (aW (x) + b)(cqW̃ (xq) + dq),

where W̃ (x) is a polynomial obtained by raising the coefficients of W (x) to the q-th power.
Replacing xq with h0(x)/h1(x), we obtain

(cW (x) + d)
∏
α∈Fq

((aW (x) + b)− α(cW (x) + d))

= (aqW̃ (h0(x)/h1(x)) + bq)(cW (x) + d)

−(aW (x) + b)(cqW̃ (h0(x)/h1(x)) + dqh1(x))

(mod xqh1(x)− h0(x)).

It was shown in [3] that matrices in the same left coset of PGL2(Fq) of PGL2(Fq2) generate
the same equations. The denominator of the right-hand size is a power of h1(x). Denote the
numerator of the right-hand side polynomial by Nm,W (x). If the polynomial Nm,W (x) is w/2-
smooth, namely, it can be factored completely into a product of irreducible factors over Fq2 ,
all have degree w/2 or less, we obtain a relation of the form

q2∏
i=1

(W (x) + αi)
ei = λe0

∏
g(x)∈S

g(x)e
′
g (mod xqh1(x)− h0(x)), (4.1)

where S ⊆ Fq2 [x] is a set of monic polynomials of degrees less than w/2 and with cardinality
at most 3w. Denote the vector (e1, e2, . . . , eq2) by vm. Note that it is a binary vector, and it is
independent of W (x). Collecting enough number of relations will allow us to represent W (x) as
a product of elements of smaller degrees. This process is the QPA-descent. A heuristic, made in
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[3], is that repeating the process, one can represent any element in Fq2 [x]/(f(x)) as a product
of linear factors. Combining it with the fact that the discrete logarithm of the linear factors
are known, one solves the discrete logarithm for any element.

However the descent will not work if W (x) is a factor of xqh1(x)− h0(x). Recall that α1 = 0.

Theorem 3. If W (x)|xqh1(x)− h0(x), e1 will always be 0 in (4.1).

In other words, if W (x) is a factor of xqh1(x)− h0(x), then it will never appear in the
left-hand side of (4.1) as a factor. So the descent for W (ζ) is not possible.

Proof. The polynomial W (x) is a zero divisor in the ring Fq2 [x]/(xqh1(x)− h0(x)). Hence
if W (x) appears in the left-hand side of (4.1) as a factor, it will also appear in the right-hand
side. This contradicts the requirement that the factors in the right-hand side have degrees
smaller than the degree of W (x).

Note that the trap factor W (ζ) can appear in the descent paths of other elements, which
essentially blocks the descents. It is especially troublesome if xqh1(x)− h0(x) has many small
degree factors.

5. The trap-avoiding descent

Now we have discovered traps for the original QPA-descent. How can we work around them?
From the above discussion, we assume that we work in a non-Kummer extension, and the
polynomial xqh1(x)− h0(x) with the factorization as (2.1) satisfies

– deg(h0) ≤ 2,deg(h1) ≤ 1;
– ki > 1 for all 1 ≤ i ≤ l; In other words, it is free of linear factors;
– gcd(k, ki) = 1 for all 1 ≤ i ≤ l.

In the most interesting case when k is a prime, our numerical data show that the above
requirements can be easily satisfied.

Heuristic 2. Let q be a prime power and k < q be a prime. Then there exist polynomials
h0 and h1 satisfying the above requirements.

Assume that the discrete logarithms of all linear polynomials have been computed. Suppose
that we need to compute the discrete logarithm of W (ζ), where W (x) is an irreducible
polynomial of degree less than k, and it is relatively prime to f(x). If W (x)|xqh1(x)− h0(x), we
will search for an integer i such that W (x)i (mod f(x)) is relatively prime to xqh1(x)− h0(x).
Such i can be found easily by a random process.

Now we can assume that gcd(W (x), xqh1(x)− h0(x)) = 1. If there are not many traps, we
will use a trap-avoiding strategy for the descent. The basic idea is simple. Whenever we find a
relation (4.1), we will not use it unless the right-hand side is relatively prime to xqh1(x)− h0(x).

Definition 1. Define the trap-avoiding descent lattice L(W ) associated with W (x) to be
generated by

{vm|Nm,W is w/2− smooth, and gcd(Nm,W , x
qh1(x)− h0(x)) = 1}.
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Note that we use less relations than [3] does, since we have to avoid traps. If the vector
(1, 0, . . . , 0) is in the trap-avoiding descent lattice of W (x), then W (x) can be written as a
product of low degree polynomials in Fq2 [x]/(f(x)) that are not traps. We believe that the
following heuristic is very likely to be true.

Heuristic 3. The trap-avoiding descent lattice for W (x) contains the vector (1, 0, . . . , 0)
if gcd(W (x), xqh1(x)− h0(x)) = 1.

To provide a theoretical evidence, we will show that (1, 0, . . . , 0) is in its super lattice that is
generated by vm for all m ∈ Pq, regardless whether Nm,W (x) is w/2-smooth or not. This is a
slight improvement over [3], where it is proved that (q3 − q, 0, . . . , 0) is in the super lattice. To
proceed, we first make some definitions following [3]. There are two matrices in consideration.

The matrix H is composed by the binary row vectors vm for all m =

(
a b
c d

)
∈ Pq. It is a

matrix of q3 + q rows and q2 columns. If we view m−1 as a map from P1(Fq) to P1(Fq2) given
by

(β1 : β2)→ (−dβ1 + bβ2 : cβ1 − aβ2),

then the i-th component of vm is 1 iff there is a point P ∈ P1(Fq) such that m−1(P ) = (αi : 1).
We define a binary vector v+

m = (e1, . . . , eq2 , eq2+1) for m ∈ Pq, where (e1, . . . , eq2) = vm, and

eq2+1 =

{
1 if (a : c) ∈ P1(Fq)
0 otherwise.

One can verify that the last component of v+
m corresponds to whether there is a point P ∈

P1(Fq) such that m−1(P ) = (1 : 0) =∞. The matrix H+ is composed by the vectors v+
m,m ∈

Pq. H+ is a matrix of q3 + q rows and q2 + 1 columns. All the row vectors have exactly q + 1
many coordinates which are 1’s.

Denote the lattices generated by the row vectors of H and H+ by L(H) and L(H+)
respectively. In [3], the authors showed that v1 = (q2 + q, . . . , q2 + q) ∈ L(H+) and v2 =
(q2 + q, q + 1, . . . , q + 1) ∈ L(H+).

Theorem 4. The vector (1, 0, . . . , 0) is in the lattice L(H).

Note that most likely L(W ) is a proper lattice of L(H), hence the above theorem does not
imply that (1, 0, . . . , 0) is in the lattice L(W ) for any polynomial W .

Proof. Fix a γ such that Fq2 = Fq[γ]. Firstly, observe that v3 = (1, . . . , 1, q) ∈ L(H+). This

follows from v3 =
∑
β∈Fq

vmβ ∈ L(H+), where mβ =

(
1 βγ
0 1

)
∈ Pq. There are q + 1 row

vectors in H+ such that both the first and the last coordinates are 1. Since the projective linear
map on a projective line is sharply 3-transitive, a third coordinate with value 1 will uniquely
determine the coset in Pq. Thus the sum of these q + 1 vectors is v4 = (q + 1, 1, . . . , 1, q + 1) ∈
L(H+).

From the above observations, we have

v5 = v2 − (q + 1)v3 = (q2 − 1, 0, . . . , 0, 1− q2) ∈ L(H+),

v6 = v4 − v3 = (q, 0, . . . , 0, 1) ∈ L(H+).

We deduce

v7 = qv6 − v5 = (1, 0, . . . , 0, q2 + q − 1) ∈ L(H+),
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which implies (1, 0, . . . , 0) ∈ L(H).

6. Concluding Remarks and Open problems

In this paper, we study the validation of the heuristics made in the quasi-polynomial time
algorithm solving the discrete logarithms in the small characteristic fields [3]. We find that
the heuristics are problematic in the cases of non-Kummer extensions. We propose a few
modifications to the algorithm, including some extra requirements for the polynomials h0 and
h1, and a trap-avoiding descent strategy. The modified algorithm relies on three improved
heuristics.

Proposition 1. If Heuristics 1, 2 and 3 hold, then the discrete logarithm problem over
Fqk (k < q) can be solved in time qO(log(k)).

We believe that proving (or disproving ) them are interesting open problems that help to
understand the effectiveness of the new algorithm.
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